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Introduction

This paper seeks to provide a concise, modern proof of Wilson’s classical oddness

theorem (see [8]). It has been suggested in recent work that the generic finiteness

and oddness of the equilibrium set for finite games can nowadays viewed as a direct

corollary of the Kohlberg & Mertens structure theorem for the equilibrium manifold

(e.g. [3], [7] Section I.4 Ex. 4b). To the extent of my knowledge, however, a proof

of this implication appears nowhere in the published literature. As such, the purpose

of this note is to provide such a proof.

Preliminaries

Game Theoretic

Let N be a finite set of agents. For all n ∈ N let An denote agent n’s finite action

set and A = ×n∈NAn. Let Σn denote the simplex of probability measures on An,

and Σ = ×n∈NΣi, the
∑

n(|An| − 1)-dimensional cell of mixed strategies. Denote by

Γn = R|S| the set of potential utility functions for agent n, and define Γ = ×n∈NΓn

as the space of potential payoff functions for of all players, identified with the space

of games with agent set N and actions A. Let η : Γ ⇒ Σ denote the equilibrium

correspondence, that is G 7→ {σ ∈ Σ : σ is a Nash equilibrium of G}, and let E =

Graph(η). Let p : E → Γ denote projection onto the first factor. Let Ē and Γ̄ be

the Alexandroff compactifications of E and Γ. For a map t : E → Γ, let t̄ denote the

natural continuous extension of t to a map from Ē → Γ̄ by letting t̄(∞) =∞.
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Semi-algebraic

Let X (resp. Y ) be a semi-algebraic subset of Rm (resp. Rn), and let f : X → Y be

a semi-algebraic map. The map f is said to be semi-algebraically trivial over a semi-

algebraic subset Z ⊂ Rn if there is a semi-algebraic set W and a homeomorphism

h : f−1(Z)→ Z ×W such that the following diagram commutes.

f−1(Z)

Z Z ×W

f
h

π1

The homeomorphism h is called a (semi-algebraic) trivialization of f over Z. A

trivializing homeomorphism for f has the property that:

f(h−1(z, w)) = z ∀z ∈ Z,w ∈ W.

We will make use of the following theorem due to Hardt (1980) (cf. [5], [2], [1]).

Theorem (Hardt, 1980). Let f : X → Y be a semi-algebraic map and let X (resp.

Y ) be a semi-algebraic subset of Rm (resp. Rn). Then there is a closed, strictly

lower-dimensional semi-algebraic subset Y0 ⊂ Y such that for each of a finite number

of open connected components Yi of Y \ Y0, there is a semi-algebraic trivialization of

f over Yi.

The primary application of this result will be applied to the map p : E → Γ. In

[1] it is shown that η is a semi-algebraic correspondence, and E is a semi-algebraic set.

As p is the projection map from E to Γ, it too is semi-algebraic and hence Hardt’s

theorem applies. For our purposes, the existence of a trivializing homeomorphism for p

over some open ball Z about a game G guarantees a number of important properties.

In particular that the set of equilibria of G is finite, the cardinality of the set of

equilibria is constant over Z, and that the graph of the equilibrium correspondence

over Z takes the form of a product of an open disk in Γ and some finite set.1

1It is worth noting that for the semi-algebraic set Wi that appears in the codomain of the
the trivializing homeomorphism qi : p−1(Yi) → Yi ×Wi is necessarily zero dimensional and hence
finite, as semi-algebraic sets have finitely many connected components. To see this, suppose it
was not; then the trivialization gives a homeomorphism between Yi ×Wi and p−1(Yi), and hence
dim p−1(Yi) > dimYi as dimension is a homeomorphism invariant (invariance of domain). But by
the Kohlberg & Mertens homeomorphism, dimYi = dim p−1(Yi), a contradiction.

2



The Structure Theorem

The structure theorem of Kohlberg & Mertens (1986) may be stated as follows.

Theorem (Theorem 1, Kohlberg & Mertens (1986)). There exists a homeomorphism

φ : E → Γ such that p ◦ φ−1 is (linearly) homotopic to the identity on Γ, under a

homotopy that extends to Γ̄.

The Kohlberg & Mertens (1986) structure theorem was proven as part of a body

of work seeking to formalize a game-theoretic notion of rationality that would exclude

the normatively unreasonable predictions put forward by the classical Nash equilib-

rium concept or the multitude of other refinements. Kohlberg and Mertens sought, in

particular, to prove that for every game, there was some stable equilibrium that was

robust to measurement error in the payoffs, in essence that there was always some

equilibrium for a given game such that all ‘nearby’ games had a ‘nearby’ equilibrium.

Kohlberg and Mertens’ proof is constructive. They construct the homeomorphism

φ by augmenting each action’s probability in an equilibrium by it’s expected payoff.

This in turn is shown to be a reversible operation. A more in-depth discussion of the

intuition underlying the construction of the homeomorphism φ is given in [4].

Main Results

We will be applying the traditional notion of Brouwer degree, which is defined for

maps of spheres. Hence we will first verify that passing to compactifications has no

effect on the relevant features of the maps defined above.

Proposition. The extended map φ̄ is a homeomorphism.

Proof. For locally compact Hausdorff spaces, it is a standard result that the natural

extension is continuous if and only if φ is a proper map.23 As φ is a homeomorphism,

2A map f : X → Y is proper if and only if, for all compacta K ⊆ Y , φ−1(K) is compact.
3To see this, first suppose f : X → Y is proper and V is some open set in Ȳ . We must verify

two cases, contingent upon whether or not ∞Y is in V . If not, then V ⊆ Y hence by continuity
f−1(V ) is open in X̄. If, alternatively, ∞Y ∈ V then Y \V is compact. As f is presumed proper by
hypothesis, it is the case that:

f−1(Y \ V ) = X \ f−1(V \ {∞Y })

is a compact and therefore closed subset of X. Hence f̄−1(V ) = f−1(V )∪{∞X} = X̄ \
(
X \f−1(V \

{∞Y })
)

= f−1(V \ {∞Y }) is open, and hence f̄ is continuous. Alternatively, supposing that f̄ is
continuous, for all compact sets K ⊆ Y , f−1(A) = f̄−1(K) is a closed subset of a compact space,
and hence compact.
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it is trivially proper, hence φ̄ is continuous and indeed also a homeomorphism by an

analogous argument applied to its inverse.

By the standard stereographic projection argument, Γ̄ is a topological sphere of

dimension |N | × |S|, hence by the structure theorem (in particular the existence of

φ), so too is Ē. Since p̄ ◦ φ̄−1 : Γ̄ → Γ̄ is a homeomorphism, its Brouwer degree

is necessarily ±1; since it is homotopic to the identity on Γ̄, indeed deg(p̄ ◦ φ̄−1) =

deg(1Γ̄) = 1, as shown below.

Proposition. The composition p̄ ◦ φ̄−1 is of Brouwer degree 1.

Proof. This follows immediately from the homotopy invariance of Brouwer degree.4

In particular, since homotopic maps induce the same map on homology, in light of

the Kohlberg & Mertens (1986) structure theorem, we must have:

(p̄ ◦ φ̄−1)∗ = 1Γ̄∗ = 1Z,

where the first equality stems from homotopy invariance.

We now turn to the proof our main result.

Theorem. There is an open, dense set of games of full Lebesgue measure on which

the set of Nash equilibria is both finite and odd.

Proof. In light of the semi-algebraicity of p, by Hardt’s theorem, there exists a closed,

strictly lower dimensional set Γ0 such that, for all finitely many open connected

components Γi of Γ \ Γ0, p is semi-algebraically trivial over Γi. Thus for all Γi there

exists a trivializing homeomorphism qi : p−1(Γi)→ Γi×{1, . . . , K} for some K ∈ N.

Let G ∈ Γi, let ε > 0 such that cl(Bε(G)) ⊂ Γi and define the restricted homeo-

morphism q̃ = qi|p−1(Bε(G)) : p−1(Bε(G))→ Bε(G)× {1, . . . , K}. As q̃ is a trivializing

homeomorphism for p, p ◦ q̃−1 is bijective on Bε(G)× {k} for all k ∈ 1, . . . , K:

p(q̃−1(G′, k)) = G′ ∀G′ ∈ Bε(G),∀k ∈ 1, . . . , K.

As a homeomorphism, q̃−1 is an open map. Moreover, as η is lower hemi-continuous

on Γ \ Γ0, the projection from its graph to the domain, p, is also an open map. The

composition of open maps is open, and thus p ◦ q̃−1 is an open bijection on each

Bε(G)× {k}, and hence a homeomorphism.5

4This in turn follows from the homotopy invariance of the induced maps on homology.
5In particular, |η(G′)| = K for all G ∈ Bε(G). Given Γ \ Γ0 is open, dense, and of full Lebesgue

measure, we have also shown that the set of equilibria is generically finite.
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Define the open sets U1, . . . , UK by:

Uk = φ ◦ q̃−1(Bε(G)× {k}) ∀k ∈ 1, . . . , K.

Then each Uk contains Gk = φ(σ∗k) ∈ Uk, for each σ∗k ∈ η(G), the game corresponding

to the image under the Kohlberg & Mertens homeomorphism of each equilibrium of

G. Then p ◦ φ−1 takes each Uk homeomorphically onto Bε(G). This follows from the

commutativity of the following diagram:

Bε(G)× {1, . . . , K} p−1(Bε(G)) qk Uk

Bε(G)

q̃−1

p ◦ q̃−1

φ

p
p ◦φ−1

Formally, we have shown φ ◦ q̃−1 is the composition of homeomorphisms and thus a

homeomorphism, p ◦ q̃−1 was shown to be a homeomorphism on each Bε(G) × {k},
and Uk = φ ◦ q̃−1(Bε(G)× {k}). As p ◦ q̃−1 = (p ◦ φ−1) ◦ (φ ◦ q̃−1), we then conclude

p ◦ φ−1 is indeed a homeomorphism, when restricted to each Uk.

Since Bε(G) ⊂ Γ = Γ̄ \ {∞Γ}, the above also immediately holds for p̄ ◦ φ̄−1, the

composite of the extensions, and we conclude it too acts homeomorphically on each

Uk. Hence for all k ∈ 1, . . . , K:

deg(p̄ ◦ φ̄−1)Gk
= ±1,

where deg(p̄◦φ̄−1)Gk
is defined as the unique integer corresponding to the isomorphism

of abelian groups:

(p̄ ◦ φ̄−1)∗ : H|N |×|S|(Uk, Uk \ {Gk})→ H|N |×|S|(Bε(G), Bε(G) \ {G}).

By the local degree theorem (first equality), and in light of our above degree propo-

sition (second equality),

K∑
k=1

deg(p̄ ◦ φ̄−1)Gk
= deg(p̄ ◦ φ̄−1) = 1,

so letting n ∈ N denote the number of Gk of local degree +1, K = 2n − 1, which is

odd and finite for all n ∈ N. As Γi was arbitrary, this holds on all of Γ \ Γ0, albeit of

course with differing K for each Γi.
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Conclusions and Relation to Prior Proof Methods

This proof differs from prior methods in that the only game theoretic considerations

are suppressed behind the Kohlberg & Mertens structure theorem. Wilson’s original

proof (see [8]) is essentially combinatorial in nature and involves varying single bound-

ary conditions in agents’ maximization problems holding others fixed and counting

what amounts to paths through a graph. Harsanyi’s 1973 proof (see [6]) instead makes

use of smooth techniques tracing out the evolution solution set as agents’ objective

functions are continuously deformed from logarithmic to affine.

In comparison, the method of proof in the above is purely topological in nature,

and makes no smoothness assumptions of any kind (indeed E is not a smooth man-

ifold), relying only on invariants of maps between spheres.6 Even the semi-algebraic

tools of Hardt’s theorem are required only to establish genericity: given Kohlberg

& Mertens’ structure theorem, at any game G for which there exists a Bε(G) such

that p acts homeomorphically on each of the finitely many connected components of

η|Bε(G), the above oddness theorem would hold as a purely topological matter, with

no further requirements, semi-algebraic or otherwise. In that sense, this method of

proof lays bare that the oddness theorem is fundamentally mathematical, rather than

game theoretic, in nature.

6Indeed the machinery employed above would hold equally well in general equilibrium contexts,
though smooth tools there hold more applicability.
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Appendix: Brouwer Degree

We first proceed with some elementary computations of homology groups of interest.

In all that follows, Hn(X) will denote reduced singular homology of the space X,

with coefficients in Z.

Proposition. For all k, Hk(S
n) is Z for k = n, and 0 for all other k.

Proof. For n > 0 clearly Bn \ {0} deformation retracts onto Sn−1, hence we consider

the long exact sequence for the pair (Bn, Sn−1), identifying Hk(B
n) ∼= 0 for all k by

contractibility:

0 Hn−1(Sn−1) Hn(Bn/Sn−1︸ ︷︷ ︸
=Sn

) 0

and hence the map Hn(Sn)→ Hn−1(Sn−1) is an isomorphism. The base case of n = 0

is satisfied immediately by definition of the reduced homology groups; proceeding

inductively, in light of the above isomorphism yields the result.

Proposition. For all x ∈ Sn, Hn(Sn, Sn \ {x}) ∼= Z.

Proof. By the long exact sequence for the pair (Sn, Sn \ {x}), we get:

· · · Hn−1(Sn \ {x}) Hn(Sn, Sn \ {x}) Hn(Sn) Hn(Sn \ {x}) · · ·δ

Identifying Hn(Sn) ∼= Z and Hk(S
n \ {x}) ∼= 0 for all k ≥ 1 via contractibility, we get

the short exact sequence:

0 Hn(Sn, Sn \ {x}) Z 0δ

and hence Hn(Sn, Sn \ {x}) ∼= Z.

Now, let f : Sn → Sm be a continuous function, and x ∈ Sn. Then f induces a

map:

f∗ : Hn(Sn, Sn \ {x})→ Hn(Sn, Sn \ {f(x)}).

In light of the above two propositions, this means f∗ : Z → Z, and hence f∗ is

multiplication by a constant, which we term the local degree of f and x, and denote
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by deg(f)x. Moreover, such a map also induces a homomorphism f∗ : Hn(Sn) →
Hn(Sn) for which we also have f∗ : Z → Z and we refer to the integer multiplier as

the global degree of f , or simply deg(f).

Theorem (Local Degree Theorem). Suppose f : Sn → Sn is a map. Suppose that

there is some y ∈ Sn such that:

f−1(y) = {x1, . . . , xK}

for K <∞. Then:

deg(f) =
K∑
k=1

deg(f)xk

Proof. Note first that instead of computing the local degree at xk via Hn(Sn, Sn \xk),
it suffices to instead pick a neighborhood Uk of xk, and a neighborhood V of y such

that f(Uk) ⊆ V and then instead look at the map:

f∗ : Hn(Uk, Uk \ {xk})→ Hn(V, V \ {y}).

This follows because the excision axiom for homology states that if (X,A) is a pair

and B a subset of A such that the closure of B is contained in the interior of A, then

the inclusion map i : (X \B,A \B) ↪→ (X,A) induces an isomorphism on homology,

i∗, hence letting A = Sn \ {xk} and B = U c
k (and A′ = Sn \ {y}, B′ = V c), the

following diagram commutes:

Hn(Sn, Sn \ {xk}) Hn(Sn, Sn \ {y})

Hn(Uk, Uk \ {xk}) Hn(V, V \ {y}).

f∗

i∗, ∼=

f∗

i′∗, ∼=

Now, as a subset of Rn+1, Sn is Hausdorff and hence we may without loss take the

Uk to be disjoint. Consider the following commutative diagram:

Hn(Sn) Hn(Sn)

Hn(Sn, Sn \ {x1, . . . , xK}) Hn(Sn, Sn \ {y})

Hn(qkUk,qk(Uk \ {xk}))

⊕
kHn(Uk, Uk \ {xk}) Hn(V, V \ {y})

f∗

∼=

f∗

excision, ∼=

⊕f∗

∼=

∼=
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where the horizontal maps are all induced by f or restrictions of f to suitable sub-

spaces, the top-left vertical map is induced by the identity 1Sn , the bottom-left is

induced by the respective identities 1Uk
, and the middle-left vertical map is induced

by the various inclusions ik : Ui ↪→ Sn.

Consider the generator 1 ∈ Hn(Sn). Traversing the left-hand side of the diagram,

the image of this generator in
⊕

kHn(Uk, Uk \ {xk}) is (1, . . . , 1). The bottom map

sends this to
∑

k deg(f)xk . But traversing the upper and right sides of the diagram,

the image of 1 is deg(f). Hence by commutativity we obtain our result.
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