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Abstract

Cycles in revealed preference data are often regarded as fundamen-

tal units of choice-theoretic inconsistency. Contrary to this, we show

that in nearly any environment, cyclic choices over some menus neces-

sarily force further cyclic choices elsewhere. In many cases, the entirety

of a subject’s inconsistency can be explained by only a handful of cy-

cles. We characterize such dependencies, and show that every set of

‘independent’ cycles capable of explaining all others is necessarily of

the same size. This quantity provides a simple, transparent measure

of irrationality that accounts for the dependencies introduced by the

structure of the choice environment or experiment.
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1 Introduction

The hypothesis that agents are rational is perhaps the most ubiquitous and

widely adopted assumption in all of economics. The testable implications of

rationality have long since been characterized by the revealed preference liter-

ature (Samuelson 1938; Houthakker 1950; Richter 1966; Afriat 1967): a sub-

ject’s choices or decisions are consistent with the maximization of a preference

relation if, and only if, no choice cycles are observed in their behavior.

Despite the clarity and elegance of these results, they are binary in nature:

behavior is either precisely consistent with the rational paradigm, or it is not.

In practice, however, it is highly unlikely that any sufficiently rich data set

would pass such an exact test (for example, due to measurement error or

model misspecification). Instead, what is needed are means to quantify the

severity, or magnitude, of any observed deviations from rationality.

This paper provides a principled, transparent method of quantifying the

degree of irrationality observed in any choice data set. Our basic observation

is that choice cycles rarely occur in isolation. Generally, once a subject has

chosen cyclically from some collection of menus, there will be other menus

on which every possible choice necessarily generates further cycles. We take

the position that such ‘forced’ or ‘knock-on’ cycles should not be viewed as

indicating any deeper degree of irrationality than what would be implied by

observing only the initial, ‘forcing’ cycles alone.

The following example illustrates how the structure of a choice environ-

ment, or experiment, can lead cyclic choices over certain sub-collections to

force subsequent choices to create additional cycles.

Example 1. Consider four alternatives {a, b, c, d}, and suppose an individual

is presented with choices between {a, b}, {b, c}, {c, d}, and {d, a}. If this

individual were to choose a in the presence of b, b in the presence of c and

so forth cyclically, their choice behavior would be inconsistent with preference

maximization, as it contains a revealed preference cycle.

Suppose now the agent is additionally presented with the opportunity to
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choose from the menu {a, b, c}. Their cyclic choices from the initial, binary

menus forces them to necessarily make another choice cycle: if a is not chosen

exclusively as the most-preferred alternative from this set, a pairwise reversal

obtains, relative to their earlier choices.1 On the other, if a is indeed chosen

from this new menu, then a is revealed to be preferable to c, creating a different,

new cycle, this time between a, c, and d. ■

In this example, the structure of the set of menus ensured that any cycle

of choices over all four alternatives can never occur in isolation: any such

cycle necessarily forces at least one other, elsewhere. In such cases, the forcing

cycle may be used to justify, or explain, the existence of the forced cycle. We

define the inconsistency rank of the data to be the size of any collection of

mutually-independent cycles (i.e. which do not explain each other) but which

nonetheless explain, in this manner, all others. We term such sets of cycles

‘irrationality kernels’ for the data. In general, many kernels may exist for a

given data set; however, we show that any two necessarily contain the same

number of elements.

The inconsistency rank may be interpreted as counting the observed num-

ber of distinct pieces of evidence of irrationality needed to justify the entirety

of a subject’s inconsistency. Since no two elements of any kernel can be used

to explain each other, our index does not ‘double count’ cycles, as the ma-

jority of existing indices do.2 Conversely, because every observed cycle can

be explained by (at least) one cycle in any kernel, we ensure that our index

reflects the entirety of a subject’s inconsistency.

As a consequence, the inconsistency rank is a cardinal index: it is meaning-

ful to say, for example, that the inconsistency in one choice data set requires

twice as many pieces of evidence to justify as another. Moreover, it is similarly

1For example, if b belongs to the subject’s choice set from this menu, then b is revealed

weakly preferred to a, while a was earlier revealed to be strictly preferred to b, creating a

cycle of length two.
2See Section 5.2 for an in-depth discussion of how the inconsistency rank relates to various

other well-known measures of irrationality.
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valid to compare the inconsistency rank of two choice correspondences defined

over distinct collections of menus. Normally, when making cross-domain com-

parisons, there is the possibility that one domain may present a more exacting

test. Frequently, this is because of the potential for more cycles to emerge

from fewer inconsistent choices on one domain than another. The advantage

of the inconsistency rank is that it normalizes precisely for this influence of

the domain’s structure on the set of observed cycles, allowing us to compare

the volume of observed evidence of irrationality in absolute terms.

In Section 3 we define our model; throughout, we consider the abstract

choice framework of Richter (1966). In Section 4 we characterize how the

structure of the choice domain leads cyclic choices over some alternatives to

sometimes force further cycles to emerge. We use this characterization in

Section 5 to define the inconsistency rank. Finally, in Section 6 we examine

extremal domains, on which either every (or no) choice cycle forces others. We

show the former class characterizes those domains on which the ‘fundamental

theorem of revealed preference’ (e.g. Ok et al. 2015) remains valid, while the

latter class is suitably degenerate. We interpret this as providing evidence that

in most practical experiments, forced cycles are likely to emerge.

2 Related Literature

There is an extensive literature on inconsistency measurement for revealed

preference data; Dziewulski et al. (2024) is an excellent recent survey. Lanier

and Quah (2024) study the incompatibility of several natural axioms such an

index might obey. Mononen (2020) axiomatizes several classical measures for

price-consumption data.

For general choice data sets, Houtman and Maks (1985) propose using

as an index the size of any minimal set of observations which, when dropped,

render the remaining observations consistent. Apesteguia and Ballester (2015)

propose a measure related to the minimal number of binary swaps needed to

transform the revealed preference relation into a preference. Ribeiro (2020)
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proposes a partial ordering, where one data set is more rational than another

if it is consistent on any sub-collection of menus on which the other is. In

practice, the number of choice cycles, or number of observations belonging to

some choice cycle, are also commonly measures (e.g. Famulari 1995; Harbaugh

et al. 2001).

For classical price-consumption data, Afriat (1973) proposes the so-called

‘critical cost efficiency’ index (cf. Varian 1990).3 More recent contributions

include Echenique et al. (2011) (see also Lanier et al. 2024) and Dean and

Martin (2016).4

3 Preliminaries

Let X be an arbitrary set of alternatives from which an agent chooses. Let

Σ ⊆ 2X\{∅} be a collection of budgets encoding the specifics of the collection

of constraints under which choice occurs. When Σ contains all budgets of

cardinality greater than one, we say that it is complete. We refer to the

tuple (X,Σ) as a choice environment, and interpret any such environment

as abstractly defining an experiment: it is simply the collection of problems

over which an agent’s choices are observed.

For any subset A ⊆ X, we define the restriction of Σ to A as those elements

of Σ wholly contained in A:

Σ|A =
{
B ∈ Σ : B ⊆ A

}
,

and for a collection of subsets A ⊆ 2X , it will be convenient to define the

shorthand:

Σ|A =

{
B ∈ Σ : B ⊆

⋃
A∈A

A

}
.

A mapping c : Σ → 2X \ {∅} is a choice correspondence if, for all

B ∈ Σ, it satisfies c(B) ⊆ B. Let C(X,Σ) denote the collection of all choice

3See Echenique (2021) for a discussion of the interpretation of this index.
4See also Mononen (2023).
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correspondences for the environment (X,Σ). Given a choice correspondence

c ∈ C(X,Σ), a weak order ⪰ on X strongly rationalizes c if:

(∀B ∈ Σ) c(B) =
{
x ∈ B : ∀y ∈ B, x ⪰ y

}
.

Given a c ∈ C(X,Σ), its revealed preference pair (≿c,≻c) is defined via: x ≿c y

if there exists some B ∈ Σ such that x, y ∈ B and x ∈ c(B), and x ≻c y if

there exists some B ∈ Σ such that x, y ∈ B, x ∈ c(B) and y ̸∈ c(B).

A choice correspondence c ∈ C(X,Σ) satisfies the weak axiom of revealed

preference if it contains no pairwise reversals: x ≿c y implies y ̸≻c x. We say

c obeys the generalized axiom of revealed preference if (≿c,≻c) contains no

cycles of the form:

x0 ≿c x1 ≿c · · · ≿c xN ≻c x0.

It is without loss to suppose that these alternatives are all distinct, as any

cycle containing multiple appearances of the same alternative necessarily also

contains a sub-cycle consisting only of distinct alternatives. In particular, it

was shown by Richter (1966), making use of an extension theorem due to

Szpilrajn (1930), that a choice correspondence is strongly rationalizable by a

weak order if and only if it obeys the generalized axiom.5 In light of this, we

will interchangeably refer to the satisfaction of the generalized axiom as strong

rationalizability.

3.1 The Budget Graph

It will be helpful to define an auxiliary structure that encodes, for a given

choice environment, which pairs of alternatives it is possible for a preference

to be revealed between. For any choice environment (X,Σ), let Γ(X,Σ) denote

the undirected graph whose vertex set VΓ = X, and whose edge set EΓ is given

by the relation of two vertices belonging to some common budget:

{x, y} = exy ∈ EΓ ⇐⇒ ∃B ∈ Σ s.t. {x, y} ⊆ B.

5We note, however, that Szpilrajn (1930) acknowledges the priority of Banach, Kura-

towski, and Tarski in discovering, though not publishing, the result.
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x0 x1 x2 x3 x4

X

B1 B2 B3

B4

(a) A choice environment with five

alternatives and three budget sets.

x0 x1

x2 x3

x4

Γ

(b) The budget graph associated

with this environment.

Figure 1: A simple choice environment and its corresponding budget graph. The coloring

of the edges in the budget graph indicates which budgets are responsible for the edge’s

inclusion in the graph.

We term Γ(X,Σ) = (VΓ, EΓ) the budget graph.

For a given c ∈ C(X,Σ) and any e ∈ EΓ there is a well-defined (possibly

empty) restriction of the revealed preference pair (≿c,≻c) to the edge e, which

we denote by (≿c,≻c)
∣∣
e
=

(
≿c

∣∣
e
,≻c

∣∣
e

)
, defined by:

≿c

∣∣
e
= ≿c ∩ {x, y} × {x, y},

(and respectively ≻c

∣∣
e
). Similarly, given a collection of edges E ′ ⊆ EΓ, we

define:

≿c

∣∣
E′ =

⋃
e∈E′

≿c

∣∣
e
.

A loop in Γ is a connected, finite subgraph γ = (Vγ, Eγ) such that every vertex

in Vγ belongs to precisely two edges in Eγ. Suppose that:

x0 ≿c x1 ≿c · · · ≿c xN ≻c x0 (1)

is a cycle in (≿c,≻c). We refer to the subgraph with vertices {x0, . . . , xN} and

edges {x0, x1}, . . . , {xN , x0} as the support of the cycle (1). The support of

a cycle is a loop if and only if it does not correspond to a WARP violation.6

Let:

Z =
{
(Ṽ , Ẽ) ⊆ Γ(X,Σ) : (Ṽ , Ẽ) is the support of a cycle

}
.

6If we have a WARP violation x0 ≿c x1 ≻c x0, then this support is simply the subgraph

(Ṽ , Ẽ) with Ṽ = {x0, x1} and Ẽ =
{
{x0, x1}

}
. This is not, however, a loop.
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We refer to Z as the cycle set of c; by doing so, we are implicitly identifying

cycles which have identical support.7 Let:

ZW =
{
(Ṽ , Ẽ) ⊆ Γ(X,Σ) : (Ṽ , Ẽ) is the support of a WARP violation

}
denote the set of (supports of) WARP violations. Note that by definition, we

have ZW ⊆ Z.

4 Propagation of Cycles

Informally, we say that a cycle propagates when, given some choices defining

it, every possible combination of other choices from the remaining budgets in

Σ necessarily lead to the formation of other choice cycles.

This was precisely what occurred in Example 1: once the cycle x0 ≻c

x1 ≻c x2 ≻c x3 ≻c x4 has been chosen, every choice the subject makes from

the remaining budget creates (at least) one other cycle. We do not know which

particular cycle will be realized until we know the subject’s choice from the

remaining budget, but even before this choice is made, we know that it will

necessarily form a new choice cycle. In such cases, we say the cycle has the

propagation property.

4.1 Cyclic Collections and Covers

Let z ∈ Z \ ZW . A collection of budgets Bz ⊆ Σ is a cyclic collection for z

if, for every e ∈ Ez, there exists a B ∈ Bz with e ⊆ B. Similarly, if z ∈ ZW ,

we say Bz ⊆ Σ is a cyclic collection for if it contains two distinct budgets B,B′

that both contain the unique edge in Ez.

Given a cycle z ∈ Z \ ZW and cyclic collection Bz, we say that Bz is

covered if either:

(i) There exists a B̄ ∈ Σ|Bz such that Vγ ⊆ B̄; or

7For example, by doing so we are regarding the cycles x0 ≿c x1 ≿c x2 ≻c x0 and

x0 ≻c x1 ≻c x2 ≻c x0 as equivalent.
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(ii) There exists a B̄ ∈ Σ|Bz such that B̄ contains a pair of elements of Vγ

that are not connected by any edge in Ez.

We refer to such a B̄ ∈ Σ as a cover.8 For a cycle z ∈ ZW , we define every

cyclic collection to be uncovered, and note that condition (i) implies (ii) if and

only if |Vγ| > 3. Conversely, if z ∈ ZW , we define any cyclic collection to be

uncovered.

Finally, we say a cyclic collection Gz is a generator for the cycle z ∈ Z
if z is also a cycle of the choice correspondence restricted to Gz, and Gz is

⊆-minimal with respect to this property.

4.2 Ex-Ante vs. Ex-Post Propagation

When considering the propagation of choice cycles, there are two natural ques-

tions we can ask:

• Ex-Ante Propagation: Given some loop γ in the budget graph, when

does every choice correspondence which contains a cycle supported on γ

necessarily also possess some other cycle?

• Ex-Post Propagation: When does every choice correspondence with

cycle z and generator Gz also possess some other cycle?

A loop γ has the ex-ante propagation property if and only if there is no way

of choosing cyclically around γ without creating some cycle elsewhere in the

data. In particular, this notion imposes no restrictions on which budgets the

choices generating the cycle on γ are made. Conversely, ex-post propagation

requires that the choices generating the cycle supported on γ be made on a

specific collection of budgets.

8Recall the restricted collection Σ|Bz
is defined as:

Σ|Bz =

{
B ∈ Σ : B ⊆

⋃
B̂∈Bz

B̂

}
,
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We distinguish between these cases by regarding ex-ante propagation as a

property of a loop on the budget graph alone, versus ex-post propagation as a

property of the pair consisting of a loop (the support of the cycle) and cyclic

collection for it (the generator for the cycle).

Our first results provide a characterization of both ex-ante and ex-post

propagation in terms of the structure of the choice environment.

Proposition 1 (Characterization of Ex-Post Propagation). Let c ∈ C(X,Σ)

be a choice correspondence with cycle z and associated generator Gz. Then the

following are equivalent:

(i) Gz is covered.

(ii) Every choice correspondence which contains z as a cycle, and Gz as a

generator for z, also contains at least one other cycle.

Proposition 1 shows that when a cycle is generate by choices on some collection

of budgets, it forces others if and only if the choice environment contains some

budget covering the collection. As a corollary of this, we obtain that a loop has

the property that cycles supported on it always propagate, no matter how the

choices generating this cycle were made, if and only if every cyclic collection

for the loop is covered.

Corollary 1 (Characterization of Ex-Ante Propagation). Let γ be a loop in

Γ(X,Σ). Then every c ∈ C(X,Σ) which chooses cyclically around γ contains

at least one other cycle if and only if every cyclic collection for γ is covered.

5 Measurement of Inconsistency

Classical revealed preferences conditions such as GARP provide a black-and-

white test of consistency: a subject satisfies the generalized axiom of revealed

preference if and only if their choice behavior is consistent with the hypothesis

of rational choice. However, such conditions are silent on the severity of any

observed deviations from rational behavior.
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In this section, we consider the problem of quantifying the magnitude of

any observed inconsistency in an arbitrary choice data set. The premise of our

approach is that, when choice cycles have forced others, any induced cycles

should not be treated as evidencing a deeper degree of irrationality than what

would have been surmised by observing the forcing cycles alone. Rather, such

forced cycles are purely artifacts of the structure of the experimental structure

itself. To the best of our knowledge, we are the first paper to consider the

structure of the choice environment in this manner, and no other commonly

used inconsistency index adequately differentiates between forcing and forced

cycles in this manner.9

5.1 The Inconsistency Rank

Consider a choice correspondence c ∈ C(X,Σ), with cycle set Z. Given z, z′ ∈
Z, we say that z explains z′ (denoted z =⇒ z′) if, for every generator Gz′ for

z′, there exists a generator Gz for z such that, for each B ∈ Gz′ , either:

(i) B also belongs to Gz; or

(ii) B covers Gz.

A cycle z explains a cycle z′ if, given some set of choices generating z, z′ is

generated by choices that either (i) were already involved in generating z, or

(ii) were made on budgets on which any choice would have created new cycles,

given those generating z.

To motivate this choice of terminology, suppose that z =⇒ z′. In light of

Proposition 1, had we observed only those choices directly involved in gener-

ating z, there are two possibilities. The first is that we also directly observe

z′, i.e. that some generator for z contains a generator for z′.10 In this case, it

9See Section 5.2 for a discussion of this point.
10For example, if X = {x0, x1, x2} and Σ =

{
{x0, x1}, X

}
, define c

(
{x0, x1}

)
= {x1} and

c(X) = X. Let z denote the cycle x1 ≻c x0 ≿c x1, and z′ the cycle x1 ≻c x0 ≿c x2 ≿c x1.

If one observes the choices generating z, here z′ is also directly observed, as Σ itself is a

generator for each cycle.
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is natural to conclude that z′ is a direct consequence of the manner in which

the choices making up z were made.

The second possibility is that z′ is not direcly generated by the choices

making up z alone but, by Proposition 1, we are able to nonetheless conclude

that every possible combination of choices from the remaining budgets in Σ

yield some other cycle(s). In this case, while the specific cycle z′ need not have

been directly caused by the choices making up z, ex-post we may still rational-

ize it as the particular realization of the additional inconsistency guaranteed

by the choices yielding z and the structure of the choice environment.

Denote the transitive closure of =⇒ by =⇒∗. If z =⇒∗ z′ then we say z

indirectly explains z′; if two cycles are =⇒∗-unrelated, we call them inde-

pendent. Define a subset of cycles I ⊆ Z to be an irrationality kernel for

the choice correspondence c if it satisfies:

(IK.1) Independence: For every pair of distinct cycles z, z′ ∈ I, z and z′ are

=⇒∗-unrelated.11

(IK.2) Explanatory Power: For every z′ ∈ Z, there exists some z ∈ I such

that z =⇒∗ z′.

An irrationality kernel is simply a subset of cycles with the property that no

two cycles in it (even indirectly) explain each other, but nonetheless which

together explain the entirety of the observed inconsistency, Z.12

When |Σ| < ∞, irrationality kernels exist and are finite, for all choice

correspondence in C(X,Σ). However, in general they will not be unique.13

Nevertheless, as our next result shows, for any choice correspondence, every

irrationality kernel has the same, finite, cardinality.

11Note that every z ∈ Z explains itself, i.e. the relation =⇒ is reflexive.
12Our definition of an irrationality kernel is also reminiscent of the notion of a ‘stable set’

in cooperative game theory; see Morgenstern and Von Neumann (1944).
13Note this does not require that X itself be finite.
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Theorem 1. Let (X,Σ) be a choice environment, with |Σ| < ∞. Then for

every c ∈ C(X,Σ) there exists at least one irrationality kernel. Moreover, for

any two kernels I, I ′ ⊆ Z:

|I| = |I ′| < ∞.

In light of Theorem 1, we may associate to any such choice correspon-

dence a well-defined number: the size of any its irrationality kernel(s); we

term this quantity the inconsistency rank of the correspondence. It reflects

the magnitude of the observed deviations from rationality, normalized for the

dependencies between elements of Z introduced by the structure of Σ.

Irrationality kernels may equivalently be interpreted as a form of general-

ized ‘basis’ for the set of cycles, Z. The requirement (IK.1) that all cycles in

I be suitably unrelated is akin to requiring a set of vectors be linearly inde-

pendent, while (IK.2) requires that, in this abstract sense, the cycles in I span

all of Z. From this perspective, Theorem 1 then establishes that every such

‘basis’ for Z is of the same size.14

The inconsistency rank admits a straightforward interpretation: it is the

minimum number of choice cycles needed to fully justify, or explain, the en-

tirety of a subject’s inconsistency.15 If each choice cycle is regarded as equally

indicative of irrationality, the inconsistency rank simply tallies the minimum

number of strikes against the hypothesis of rationality needed to justify their

observed deviations.16

14Formally, the proof of Theorem 1 amounts to showing that set of cycles Z can be

endowed with a matroid structure (see, e.g., Oxley 2006) in which the irrationality kernels

I are precisely the bases.
15Kalai et al. (2002) consider a spiritually similar measure of inconsistency, the number

of preferences needed to rationalize the data by ‘multiple rationales.’
16Crucially, while every irrationality kernel is maximally independent, not every maxi-

mal independent set is an irrationality kernel. In general, such sets may be much larger

than the inconsistency rank. For example, suppose a single cycle z directly explains cycles

z1, . . . , zK , but where where z1, . . . , zK are pairwise independent. Then the set {z1, . . . , zK}
is (maximally) independent, but the unique irrationality kernel is simply {z}.
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In light of this, the inconsistency rank may be regarded as a cardinal mea-

sure of inconsistency. It is meaningful to say, e.g., that given two choice corre-

spondences, one requires twice as many cycles as another to explain away all

the observed inconsistency. Indeed, such comparisons remain valid even across

differing domains. Generally, different choice domains will affect the patterns

of dependencies, and hence explanatory relations, between cycles differentially.

However, the advantage of the inconsistency rank is that it normalizes for pre-

cisely these differences in explanatory relations, yielding a measurement in

absolute terms.

5.2 Relation to Other Measures

The inconsistency rank is not a monotone transformation of any existing in-

dices. In this section, we consider a number of well-known measures of incon-

sistency and show, by means of example, that each may yield the opposite

ranking of the relative consistency of two choice correspondences when com-

pared to the inconsistency rank. We interpret this as evidence that existing

measures do not, in general, account for dependencies between cycles, and

hence are prone to double counting.

5.2.1 Counting Cycles

The cycle count is of a choice correspondence c is simply |Zc|, i.e. the size of

its set of revealed preference cycles (e.g. Harbaugh et al. 2001).

Example 2. Suppose X = {x0, . . . , x4} and Σ consists of the budgets:

{x0, x1}, . . . , {x4, x0}, and {x0, x2, x3}.

Consider the following choice correspondences:

c(B) =

{xi} if B = {xi, xi+1}

{x0, x2, x3} if B = {x0, x2, x3},
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and

c′(B) =

{xi, xi+1} if B = {xi, xi+1}

{x2, x3} if B = {x0, x2, x3}.

The first correspondence has |Zc| = 7 (one cycle on every loop of the budget

graph, plus one WARP violation), and the second |Zc′ | = 4. Thus, the cycle

count index ranks c as exhibiting a greater degree of irrationality than c′.

However, for c, the cycle x0 ≻c x1 ≻c · · · ≻c x0 explains every other cycle, and

hence the inconsistency rank of c is one, whereas all of the irrational kernels for

c′ are of cardinality two, yielding the opposite conclusion when the structure

of the domain is accounted for. ■

5.2.2 Choices-In-Cycles

Another natural approach to quantifying inconsistency is to count the num-

ber of choices involved in patterns inconsistent with rationality (e.g. Famulari

1995; Swofford and Whitney 1986). In our setting, this amounts to count-

ing the number, or proportion, of choices which are involved in some revealed

preference cycle.

Example 3. Let X = {x0, x1, x2, y0, y1, y2, z0, . . . , zK}, and Σ consist of the

sets:

{x0, x1}, . . . , {x2, x0}, {y0, y1}, . . . , {y2, y0}, and {z0, z1}, . . . , {zK , z0}.

Define:

c(B) =


{xi} if B = {xi, xi+1}

{yi} if B = {yi, yi+1}

{zi, zi+1} if B = {zi, zi+1}.

Then c has 6 choices appearing in some choice cycle, and its two cycles are

independent hence it has an inconsistency rank of 2. Conversely, define:

c′(B) =


{xi, xi+1} if B = {xi, xi+1}

{yi, yi+1} if B = {yi, yi+1}

{zi} if B = {zi, zi+1}.
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Here, c′ has K choices appearing in its one cycle, and has an inconsistency

rank of 1. Thus here the inconsistency rank and choices-in-cycles (and the

fraction of choices-in-cycles) index yield opposite comparisons across agents.■

5.2.3 Houtman-Maks

Houtman and Maks (1985) propose using as an index the minimal number of

choices which, when removed from the data, make the remaining observations

rationalizable.

Example 4. Consider again the environment and choice correspondences from

Example 2. The Houtman-Maks index for the first correspondence c is equal

to two: one must, e.g., remove the budget {x0, x2, x3} and one binary budget

to break every cycle. In contrast, for c′ it suffices to remove {x0, x2, x3} alone,

and hence its Houtman-Maks index is one. However, the inconsistency rank

of c is one, versus two for c′, again yielding a reversal. ■

5.2.4 Swaps Index

Apesteguia and Ballester (2015) propose measuring the inconsistency of a data

set by counting the minimal number of binary ‘swaps’ needed to take the best-

fitting linear order and render it consistent with the observed choices.17

Example 5. Let X = {x0, . . . , x5} and Σ consist of the budgets:

{x0, x1}, . . . , {x4, x5}, {x5, x0}, {x0, x1, x4}, and {x1, x3, x4}.

Define the choice functions:

c(B) =


{xi+1} if B = {xi, xi+1}

{x0} if B = {x0, x1, x4}

{x1} if B = {x1, x3, x4},

17Formally, Apesteguia and Ballester (2015) consider rationalizing data by a linear order.

This poses no particular difficulty to our framework.
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and

c′(B) =



{xi+1} if B = {xi, xi+1}, i ∈ {1, 2}

{xi} if B = {xi, xi+1}, i ∈ {0, 3, 4}

{x0} if B = {x0, x1, x4}

{x1} if B = {x1, x3, x4}.

Consider first the choice function c. There are five cycles in Zc, one each of

length six, five, four, three, and two. However, the cycle of length six explains

every other cycle, hence there is a unique irrationality kernel, consisting of just

this cycle. In contrast, there are only three cycles in Zc′ , one of length four

and two of length three. Here, the cycles x0 ≻c′ x1 ≻c′ x4 ≻c′ x5 ≻c′ x0 and

x3 ≻c′ x2 ≻c′ x1 ≻c′ x3 together form an irrational kernel, and we conclude

that c′ exhibits a lesser volume of irrational behavior than does c, according

to the inconsistency rank.

The opposite ordering, however, is obtained when considering the swaps

index values for these choice functions. When computing the swaps index for

c, the the linear order:

x1 ▷ x0 ▷ x5 ▷ x4 ▷ x3 ▷ x2

is most consistent with the data. This yields a swaps index of three (there are

two inconsistencies from choice on {x0, x1, x4} and one on {x1, x2} relative to

this order).

On the other hand, for c′, the linear order:

x5 ▷ x2 ▷ x0 ▷ x1 ▷ x3 ▷ x4

minimizes the swaps index, but requires only two swaps (one each on the

budgets {x2, x3} and {x4, x5}). This shows that the inconsistency rank is not

a monotone transformation of the swaps index. ■

5.2.5 Rationality Ordering

Ribeiro (2020) proposes an ordinal ranking of choice data, called the ‘rational-

ity ordering.’ A choice correspondence c dominates a correspondence c′ in this
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ordering if, for every sub-collection Σ′ ⊆ Σ on which c|Σ′ is not rationalizable,

c′|Σ′ is also not rationalizable.

Example 6. Suppose X = {x0, x1, x2} and Σ is the complete domain, con-

sisting of all non-empty, non-singleton subsets of X. Define:

c(B) =


{x1} if B = {x0, x1}

B if B = X

{x2} else,

and

c′(B) =

{xi+1} if B = {xi, xi+1}

B else.

The correspondence c has four choice cycles, three of length two on {xi, xi+1},
label these zi, i = 0, 1, 2, and one of length three over all of X, labelled z.

Note that each two-cycle zi has a unique generator, {xi, xi+1} and X, and the

three-cycle z has two possible choices of generator, {x1, x2} and X, or {x2, x0}
and X. The set {z0, z} defines an irrationality kernel, as for each zi, i = 1, 2,

z =⇒ zi, hence we obtain that the inconsistency rank of c equals 2.18

For correspondence c′, there are again four cycles, with the same supports.

However, note that now, the three-cycle has {x0, x1}, . . . , {x2, x0} as a genera-

tor, and hence it directly explains all the zi, not just z1 and z2 as was the case

for c. Thus the singleton set {z} defines an irrationality kernel, and hence the

inconsistency rank of c′ is 1. However, by inspection, c is rationalizable on a

strictly larger collection of subdomains of Σ than c. Thus in the rationality

ordering, c is deemed strictly more rational than c′, and hence we observe a

reversal relative to the inconsistency index.19 ■
18There are other irrationality kernels. For example, {z0, z1} also defines a kernel because

z1 directly explains z, and z directly z2, hence z1 indirectly explains both z and z2. By an

analogous argument, {z0, z2} defines yet another kernel.
19For an example of the strict part of this claim, note c′ is not rationalizable restricted to

the doubleton budgets, but c is.
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6 Extensions

6.1 Propagation-Free Design

A natural question is to what degree careful experimental design can ensure

that no choice cycles have the propagation property. Clearly such environ-

ments exist, e.g. when Σ is singleton, but a priori it is unclear how broad this

class is.

Define a choice environment (X,Σ) to be propagation-free if, for all

c ∈ C(X,Σ) and any cycles z, z′ ∈ Z,

z =⇒∗ z′ if and only if z = z′.

In other words, an environment is propagation-free if every cycle is independent

of every other, for every choice correspondence. When this is the case, Z is

the unique irrationality kernel for any data set, and hence the inconsistency

rank always equals the cycle count, |Z|. Our next result shows that, while

propagation-free environments do exist, they are ‘degenerate,’ in a sense we

make precise.

Theorem 2. Let (X,Σ) be a choice environment with finite budget graph

Γ(X,Σ). If Σ is propagation-free then, for any loop γ in the budget graph,

every cyclic collection Bγ consists of either:

(i) A single budget containing the entire vertex set of γ; or

(ii) Consists exclusively of two-element budgets.

Theorem 2 shows that for a given loop in Γ(X,Σ), there are two possibili-

ties: either it is incapable of supporting a choice cycle from any c ∈ C(X,Σ),

or it has a unique cyclic collection, its edge set. In particular, no budget of

cardinality ≥ 3 can be a part of any choice cycle.

Given the particularly simple structure of such environments, we interpret

Theorem 2 as evidencing that most practical choice experiments will necessar-

ily give rise to the possibility of choice cycles propagation. This suggests that
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the inconsistency rank is broadly applicable and will, in most environments of

interest, yield different predictions than existing indices.

6.2 Well-Covered Environments

In this section, we consider the opposite extreme: choice environments where

every loop has the (ex-ante) propagation property. Call a choice environment

(X,Σ) well-covered if, for every loop γ in the budget graph Γ(X,Σ), ev-

ery cyclic collection Bγ for γ is covered. Well-coveredness is a completeness,

or observational richness, condition on the environment. In particular, the

‘complete’ domain consisting of X and all subsets of X of cardinality ≥ 2 is

well-covered.

A well-known property of complete environments is that the weak axiom

of revealed preference is equivalent to the generalized, and hence characterizes

rationalizability (e.g. Arrow 1959). This result is sometimes referred to as the

‘fundamental theorem of revealed preference’ (Ok et al. 2015).

Dating back at least to the characterization of rationalizability for general

environments by Richter (1966), it has been an open question in the revealed

preference literature to characterize those ‘observationally rich’ domains on

which the weak axiom remains characteristic.20 Our next result builds on

our theory of propagation to provide a complete solution: well-coveredness

is precisely the minimal observability requirement needed for a ‘strong’ weak

axiom.21

Theorem 3. Let (X,Σ) be an arbitrary choice environment. The weak axiom

of revealed preference is necessary and sufficient for strong rationalizability if

and only if (X,Σ) is well-covered.

20For an analogue of this result in the context of price-consumption data, see Cherchye

et al. (2018).
21The problem of characterizing which domains the weak axiom implies the generalized

may be viewed as an ordinal analogue of the problem in mechanism design of characterizing

those type spaces on which weak and cyclic monotonicty coincide. See, e.g. Saks and Yu

(2005); Kushnir and Lokutsievskiy (2019).
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7 Conclusions

We present a novel measure of the degree of observed irrationality for choice

data, the inconsistency rank. Our index is based around the observation that

the structure of a choice environment, or experiment, can lead to non-trivial

dependencies between choice cycles. Our index admits a simple interpretation

as the number of distinct instances of observed irrationality needed, in order

to explain the totality of a subject’s inconsistency.

More generally, we clarify an important dimension of experiment design:

how the structure of the selected menus or choice sets affects (and constrains)

manner in which inconsistent choices can be made. By normalizing for this

structure, our index provides a natural, cardinal measure of inconsistency that

remains valid both within and across domains.

A Proof Appendix

A.1 Proof of Proposition 1

Proof. (ii) =⇒ (i): Suppose z is a cycle of c, with uncovered generator Gz.

By contraposition, it suffices to exhibit a choice correspondence c′ ∈ C(X,Σ)

which also contains z as a cycle, and Gz as a generator for z, but which contains

no other cycles.

Denote the revealed preference cycle z via:

x0 ≿c x1 ≿c · · · ≿c xN ≻c x0,

where N ≥ 1. We first define a choice correspondence on Σ|Gz . Let:

c̃′(B) =


xi if {xi, xi+1} ⊆ B for some i,

B ∩ Vz if |B ∩ Vz| = 1,

B if B ∩ Vz = ∅.

As Gz is a generator for z, every extension of c̄′ to Σ must contain z as a cycle.

Moreover, since Gz is uncovered, these three cases exhaust the possible ways a
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budget in Σ|Gz can intersect Vz = {x0, . . . , xN}. We now define an extension

c′ via:

c′(B) =

B \
(
∪B∈Gz B

)
if B ̸∈ Σ|Gz ,

c̃′(B) else.

Let:

y0 ≿c′ y1 ≿c′ · · · ≿c′ yM ≻c′ y0,

denote an arbitrary revealed preference cycle of c′. First, note that for all

0 ≤ i ≤ M , we must have yi ̸∈ X \
(
∪B∈Gz B

)
, as by construction, the only

things that are c′-revealed weakly preferred to elements in this set are other

elements in this set, and no alternative is ever c′-strictly revealed preferred to

any element of this set. Thus for all i, we have yi ∈
(
∪B∈Gz B

)
.

Suppose then that yi ∈
(
∪B∈Gz B

)
\ Vz. By induction, every yj with j ≥ i

must also belong to
(
∪B∈Gz B

)
\ Vz, as yi ≿c′ yi+1 implies that yi, yi+1 ∈ B

where B ∩ Vz = ∅. Thus, in particular yM ∈
(
∪B∈Gz B

)
\ Vz, which is a

contradiction as no elements in this set are ever c′-strictly revealed preferred

to any other alternative.

Thus we conclude that every yi must belong to Vz. Moreover, each {yi, yi+1} ∈
Ez, as by construction, if yi ≿c′ yi+1, and yi, yi+1 ∈ Vz, then yi, yi+1 ∈ B where

B ∈ Σ|Gz . This means that if {yi, yi+1} ̸∈ Ez, that B would cover Gz, a

contradiction. Thus every {yi, yi+1} ∈ Ez, and hence that, in fact, this cycle

is precisely z. Since this cycle was arbitrary, we conclude that c′ possesses

precisely one cycle: z, as desired.

(i) =⇒ (ii): Suppose now that Gz is covered, and that c′ ∈ C(X,Σ) is

arbitrary, other than (i) having cycle z and Gz generating z for c′. Let B ∈ Σ

cover Gz; we consider two cases.

Case: c′(B) ∩ Vz = ∅. Let x∗ ∈ c′(B); since x∗ ∈ B and B covers Gz,

we know x∗ ∈
(
∪B̂∈Gz

B̂
)
and hence that x∗ ∈ B′ for some B′ ∈ Gz. Since

c′(B′) ∩ Vz ̸= ∅, we know that, for some 0 ≤ i, j ≤ N , we have:

x∗ ≻c′ xi ≿c′ · · · ≿c′ xj ≿c′ x
∗,
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where xj ∈ c′(B′), and x∗ ≻c′ xi because x∗ ∈ c′(B) and c′(B) ∩ Vz = ∅ by

hypothesis. Since x∗ ̸∈ Vz, this cycle must necessarily be distinct from z.

Case: c′(B) ∩ Vz ̸= ∅. Let xi ∈ c′(B) ∩ Vz. If xj ∈ B ∩ Vz, where

{xi, xj} ̸∈ Ez then, we obtain the cycle:

xi ≿c′ xj ≿c′ · · · ≿c′ xN ≻c′ x0 ≿c′ · · · ≿c′ xi.

Since xi and xj are non-adjacent in z, this means that at least xi+1 does not

appear in the above cycle and hence it is distinct from z. If c′(B) contains no

other element of Vz there are two sub-cases: either Vz ⊆ B or B contains two

elements of Vz which do not form an edge in Ez. Consider first the former.

If Vz ⊆ B, then we have xi ∈ c′(B) and xi+1 ∈ B \ c′(B). Hence xi ≻c′ xi+1

and xi+1 ≿c′ xi, and this two-cycle is a distinct cycle from z, as z possesses an

uncovered cyclic collection Gz, and hence by definition must be supported on

a loop (i.e. be of length greater than two). Consider then the latter sub-case.

We have already shown that if B ∩ Vz contains any alternative non-adjacent

in z to xi then there is another cycle, hence suppose that every element of

B ∩ Vz is adjacent to xi. Since B contains a pair of alternatives non-adjacent

in z, and every element of B ∩ Vz must be adjacent to xi in z, this implies

that B ∩ Vz = {xi−1, xi, xi+1}. Since we have shown already that if xi−1 or

xi+1 belongs to c′(B) there is another cycle, suppose that xi ∈ c′(B) and xi−1,

xi+1 are not. Then by an analogous argument to the prior sub-case we obtain

a WARP violation. Thus we conclude that c′ must contain some cycle other

than z.

A.2 Proof of Theorem 1

Proof. We first show that |Σ| < ∞ implies that, for any c ∈ C(X,Σ), at least

one finite irrationality kernel must exist. By definition, =⇒∗ is a preorder.

Consider Ẑ := Z/ ⇐⇒∗, i.e. the set of cycles of c modulo the equivalence

relation ⇐⇒∗. We claim Ẑ must be finite. To see this suppose, for sake of

contradiction, that Ẑ is infinite. Then there exists (distinct)
{
[z1], [z2], . . .

}
⊆

Ẑ. Let {Gzi}∞i=1 denote an arbitrary choice of generator for an arbitrary choice
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of cycle within each equivalence class. This defines a map
{
[z1], [z2], . . .

}
→ 2Σ,

via [zi] 7→ Gzi . Since |Σ| < ∞, by the pigeon-hole principle this map cannot

be injective, and hence there exists i ̸= j such that Gzi = Gzj and thus some

z̃i ∈ [zi] and z̃j ∈ [zj] have a common generator, and therefore are ⇐⇒∗-

equivalent, implying [zi] = [zj], a contradiction. We conclude Ẑ is finite, and

hence (Ẑ,=⇒∗) is a finite partially ordered set. In particular, if non-empty, it

must contain at least one undominated element. Forming I ⊆ Z by choosing

one cycle in Z from each =⇒∗-undominated equivalence class in (Ẑ,=⇒∗)

then yields a finite irrationality kernel as desired.

We now show that any two irrationality kernels I and I ′ for a given

c ∈ C(X,Σ) are equicardinal. Suppose then that I, I ′ ⊆ Z are distinct ir-

rationality kernels for c. Then without loss of generality, there exists some

z ∈ I \ I ′. Since I ′ is an irrationality kernel, there exists some z′ ∈ I ′ such

that z′ =⇒∗ z. Since I is an irrationality kernel, by (IK.1) it must be the case

that z′ ̸∈ I but that, by (IK.2), there exists some z′′ ∈ I such that z′′ =⇒∗ z′.

Since =⇒∗ is transitive, z′′ =⇒∗ z as well, and hence z′′ = z and z ⇐⇒∗ z′.

Moreover, by (IK.1) z (resp. z′) must be the only element of I (resp. I ′) with

this property.

Define ϕ : I → I ′ via:

ϕ(z) =

z if z ∈ I ∩ I ′

z′ if z′ ∈ I ′ and z′ ⇐⇒∗ z.

In light of the above, we have shown this map is well-defined and a bijection

between I and I ′; we conclude they are equicardinal, and, in particular, both

finite.

A.3 Proof of Theorem 2

Proof. Suppose, for purposes of contraposition, there exists a loop γ = (Vγ, Eγ) ⊆
Γ(X,Σ) with a cyclic collection Bγ that satisfies neither (i) nor (ii). We will

show that there exists a loop γ′ ⊆ Γ(X,Σ) that supports a cycle and has a
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covered cyclic collection, and hence by Proposition 1 that there exists a choice

correspondence whose set of cycles admits a non-trivial relation.

To this end, let B∗ ∈ Bγ denote a budget of cardinality > 2 (the existence

of which is guaranteed by hypothesis). We consider two cases.

Case: Vγ ̸⊆ B∗

We suppose first that Vγ contains some point not in B∗. Let:

E∗ = {e ∈ Eγ : e ⊆ B∗}

denote those edges in γ that are wholly contained in B∗. By hypothesis, both

E∗ and Eγ \ E∗ are non-empty. As γ is a loop, the edge set of the subgraph

γ̃ = (Vγ, Eγ\E∗) is a finite disjoint union of paths, the endpoints of which all lie

in B∗.22 Let Bo = {x ∈ B∗ :̸ ∃e ∈ Eγ \E∗ s.t. x ∈ e} denote those elements of

B∗ that are not contained in any edge of Eγ\E∗. Suppose this set is non-empty.

Enumerate Bo as {b0, . . . , bK}, define Eo =
{
{b0, b1}, . . . , {bK−1, bK}

}
⊆ EΓ,

and enumerate the path components of γ̃ as γ̃0, . . . , γ̃J .
23 For each 0 ≤ j ≤ J ,

choose one of the two degree-one vertices of the path as the ‘head,’ which we

will write as v+j , and the other as the ‘tail,’ denoted v−j . Define:

Ê = Eo ∪ Eγ̃ ∪
{
{v+j , v−j+1}

}J−1

j=0
∪ {b0, v−0 } ∪ {v+J , bK},

where Eγ̃ = Eγ \ E∗. If, instead, Bo was empty, define Ê analogously, but

replace {b0, v−0 }∪ {v+J , bK} with {v−0 , v+J } in the above expression. Now, every

element of Ê is either an element of Eγ (and hence in EΓ) or is a subset of B∗,

and hence in EΓ, thus γ̂ = (Vγ∪B∗, Ê) ⊆ Γ(X,Σ). Moreover, by construction,

γ̂ is a loop whose every cyclic collection is covered: any cyclic collection for γ̂

must contain Vγ ∪B∗ in the union of its elements. Since |B∗| ≥ 3, this implies

that B∗ must cover the cyclic collection. It remains to show that γ̂ supports

a cycle for some c ∈ C(X,Σ). Since B∗ does not contain Vγ we have that

Bγ \{B∗} ≠ ∅ and, in particular, there exists some x∗ ∈ B∗ such that the two

22A path is a finite tree graph with two nodes of degree one, and all other nodes of degree

2.
23As Γ(X,Σ) is finite by hypothesis, so too is every budget and hence B̂.

25



edges of γ̂ containing x∗ are not both subsets of B∗. Then, define:

c(B) =

B∗ \ {x∗} if B = B∗

B else

yields a revealed preference pair with a cycle supported on γ̂.

Case: Vγ ⊆ B∗

Suppose first that Vγ ⊊ B∗. Enumerate B∗\Vγ as {b0, . . . , bK}, and suppose

e = {x, y} ∈ Eγ is an edge contained in B∗. Then let:

Ê =
(
Eγ \ {e}

)
∪
{
{bk, bk+1}

}K

k=0
− 1 ∪ {x, b0} ∪ {bK , y},

and define γ̂ = (Vγ, Ê). If, contrary to our initial assumption, Vγ = B∗, then

simply define γ̂ = γ. Then every cyclic collection of γ̂ is covered, as its vertex

set is simply B∗, which is itself a budget. To show that γ̂ supports a cycle,

observe that by hypothesis, there is some budget B∗∗ ∈ Bγ\{B∗} that contains
an edge e′ of γ different from e. Denote such an e′ = {a, b}. Then e′ ∈ Ê and:

c(B) =

{a} if B = B∗∗

B else

yields a revealed preference cycle supported on γ̂.

A.4 Proof of Theorem 3

Let W(X,Σ) (resp. G(X,Σ)) denote the set of choice correspondences satis-

fying the weak (resp. generalized) axioms.

A.4.1 Preliminary Lemmas

Lemma 1. Let (X,Σ) be a choice environment and let γ be a loop in Γ(X,Σ).

Then there exists choice function c ∈ W(X,Σ) such that ≿c |Eγ is a cycle if and

only if there exists a cyclic collection Bγ and choice function c̃ ∈ W(X,Σ|Bγ )

such that ≿c̃ |Eγ is a cycle.
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Proof. (=⇒): Suppose there exists a c ∈ W(X,Σ) such that ≿c |Eγ is a cycle.

Then there exists some cyclic collection Bγ with the property that the choices

inducing ≿c |Eγ are all made on elements of Bγ. Then the restriction of c to

Σ|Bγ must still obey the weak axiom, and clearly satisfies the conclusion of the

lemma.

(⇐=): Suppose now there exists a cyclic collection Bγ and a c̃ ∈ W(X,Σ|Bγ )

such that ≿c̃ |Eγ is a cycle. Define an extension of c̃ to all of Σ as follows:

c(B) =

c̃(B) if B ∈ Σ|Bγ

B \
(
∪B̃∈Bγ

B̃
)

else.

This defines a choice correspondence in W(X,Σ), for if x ≿c y for distinct

x, y, either x, y ∈ ∪B̃∈Bγ
B̃, in which case there can be no violation of the weak

axiom as c̃ is in W
(
X,Σ|Bγ

)
, or x ̸∈ ∪B̃∈Bγ

B̃, in which case by construction

¬ y ≻c x, and thus c ∈ W(X,Σ).

Lemma 2. Let (X,Σ) be a choice environment and let γ be a loop in Γ(X,Σ)

with |Vγ| = 3. Then there exists a choice correspondence c ∈ W(X,Σ) with

≿c |Eγ a cycle if and only if there exists a cyclic collection Bγ that is not

covered.

Proof. (⇐=): Suppose that Bγ is an uncovered cyclic collection for γ of mini-

mal cardinality. Let us denote Eγ = {e0, e1, e2}. Then, in particular, for every

ej ∈ Eγ, there is a unique Bj ∈ Bγ with ej ⊆ Bj. Define c̃ ∈ C(X,Σ|Bγ ) via:

c̃(B) =


ej ∩ ej+1 if ∃ ej ∈ Eγ s.t. B ∩ Vγ = ej

B ∩ Vγ if |B ∩ Vγ| = 1

B else.

where all subscripts are taken mod-3. Note c̃ is well-defined, as Bγ is uncovered

from which it follows the first two cases exhaust the possibilities for budgets

in Σ|Bγ that intersect Vγ. Moreover, c̃ ∈ W(X,Σ|Bγ ). First, observe the

restriction of the pair (≿c̃,≻c̃)|Eγ satisfies the weak axiom. But the only
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alternatives c̃ reveals strictly preferred to any others all lie in Vγ, and the

only goods ever revealed preferred to elements of Vγ also lie in Vγ. Hence

c̃ ∈ W
(
X,B ∈ Σ|Bγ

)
, and by Lemma 1 there exists a c ∈ W(X,Σ) such that

≿c |Eγ is cyclic.

(=⇒): Let c ∈ W(X,Σ) be such that ≿c |Eγ is cyclic. Then there exists a

cyclic collection Bγ on which choices generating the cycle ≿c |Eγ are made; fix

such a collection. We now show that this cyclic collection must be uncovered,

lest there exist some B ∈ Σ|Bγ such that Vγ ⊆ B. Suppose, for sake of

contradiction, that such a B exists.

Case 1: Suppose first that c(B) ∩ Vγ ̸= ∅. Then either c(B) induces com-

plete indifference across Vγ, or there exists some pair of elements of Vγ that is

either strictly preferred to, or strictly dominated by the third element. Both

possibilities preclude the existence of the cycle ≿c |Eγ for any c ∈ W(X,Σ).

Case 2: Suppose then that c(B) ∩ Vγ = ∅: then for all x ∈ Vγ and y ∈ c(B)

we have y ≻c x. But c(B) ⊂ B ⊆ ∪B̃∈Bγ
B̃, and since for all x ∈ Vγ there exists

some B̃ such that x ∈ c(B̃), there exists an x̃ ∈ Vγ and B̃ ∈ Bγ such that

x̃, y ∈ B̃ and x̃ ∈ c(B̃). This contradicts our hypothesis that c ∈ W(X,Σ).

Lemma 3. Let (X,Σ) be a choice environment and let γ be a loop in Γ(X,Σ)

with |Vγ| > 3. Suppose there exists a choice correspondence c ∈ W(X,Σ) with

≿c |Eγ a cycle. If every cyclic collection Bγ is covered, then there exists a loop

γ′ in Γ(X,Σ) such that |V ′
γ | < |Vγ| and with ≿c |Eγ′

a cycle.

Proof. Let Bγ be a minimal cyclic collection on which choices inducing ≿c |Eγ

are made, and suppose Bγ is covered. Then there exists some B ∈ Σ|Bγ such

that B contains a non-adjacent pair of vertices of γ. We proceed in two cases.

Case 1: Suppose first that c(B) does not intersect Vγ. Let xk, xk′ ∈ B ∩ Vγ

be one such non-adjacent pair of vertices, and let y ∈ c(B). As c(B) ⊆ B ⊆
∪B̃∈Bγ

B̃, and Bγ is a minimal cyclic collection on which choices inducing the

cycle ≿c |Eγ are made, there is some B̃k∗ ∈ Bγ containing y, such that there

is some xk∗ ∈ c(B̃k∗) ∩ Vγ. Without loss of generality, let xk′ ≿c · · · ≿c xk∗ ≿c
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· · · ≿c xk. In particular, by our hypothesis that c obeys the weak axiom, we

cannot have xk∗ = xk (or xk′).
24 As c(B) does not contain any element of Vγ

by hypothesis, but xk′ ∈ B, we have y ≻c xk′ , and, as xk∗ , y ∈ B̃k∗ , it follows

xk∗ ≿c y. Thus: y ≻c xk′ ≿c · · ·xk∗ ≿c y. Define γ′ to be the graph with

Vγ′ given by the above collection of points, and Eγ′ consisting of those pairs

related in the above cycle (clearly as there is a non-empty revealed preference

for each pair this forms a loop in Γ(X,Σ)). By construction, ≿c |Eγ′
is a cycle.

Now, since xk∗ ̸= xk, xk ̸∈ Vγ′ . Moreover, since xk and xk′ are non-adjacent in

γ, under ≿c |Eγ we also have: xk ≿c · · · ≿c x̄ ≿c · · · ≿c xk′ along the ‘other

side’ of the loop. Thus we also have that x̄ ̸∈ Vγ′ . So while we have added a

point y not in Vγ to our Vγ′ , we have omitted at least two others, xk and x̄,

and we conclude: |Vγ′| < |Vγ| as required.

Case 2: Suppose now that c(B) intersects Vγ. As B contains the non-adjacent

pair xk, xk′ ∈ Vγ, the only way that c(B) can avoid revealing a preference

between xk and xk′ is if neither is in but both are adjacent in γ to c(B).

Moreover, this argument holds for every non-adjacent pair of vertices of γ

contained in B. Now, if c(B) induces a revealed preference xi ≿c xj between

any pair of non-adjacent vertices xi, xj ∈ Vγ this partitions ≿c |Eγ into two sub-

cycles, one of which must always contain a strict relation (either from ≿c |Eγ

or resulting from a strict revealed preference between xi and xj). Letting γ′

be defined by the vertices and pairs supporting any such sub-cycle suffices

to prove the claim. Thus suppose that c(B) does not induce any revealed

preference between any non-adjacent pair (lest we be done). Thus c(B) is

adjacent to both xk and xk′ (and hence singleton) and c(B) = {x∗} induces

both xk ≺c x
∗ ≻c xk′ . But these three points are all elements of Vγ, hence by

virtue of ≿c |Eγ being a cycle we have either xk ≿c x
∗ ≿c xx′ or the reverse.

But both of these yield contradiction via a violation of the weak axiom, and

hence there exists a strictly shorter ≿c-cycle.

24As y ≻c xk and y ≻c xk′ by hypothesis, but xk∗ ≿c y via choice on Bk∗ .
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A.4.2 Proof of Theorem 3

Theorem. Let (X,Σ) be a choice environment. Then W(X,Σ) = G(X,Σ) if

and only if Σ is well-covered.

Proof. (⇐=): For purposes of contraposition, suppose thatW(X,Σ) ̸= G(X,Σ).

Then there exists some loop γ in the budget graph Γ(X,Σ) and some choice

correspondence c ∈ W(X,Σ) such that ≿c |Eγ is a cycle. If |Vγ| = 3, then

by Lemma 2, Σ is not well-covered and we are done. Hence suppose γ is of

length strictly greater than three. Then there exists some cyclic collection Bγ

on which choices generating the cycle ≿c |Eγ are made. If Bγ is not covered,

we are done, hence suppose it is. Then by Lemma 3 there exists a loop γ′ in

the budget graph of strictly shorter length such that ≿c |Eγ′
is also a cycle.

As we have already concluded this process cannot repeat until it hits a three-

cycle, we conclude that at some stage, there exists some loop γ(n) for which

there exists a cyclic collection Bγ(n) which is not covered and hence Σ is not

well-covered.

(=⇒): We again proceed by contraposition. If a cyclic collection for a

budget graph loop of length 3 is uncovered, by Lemma 2, we immediately

obtain W(X,Σ) ̸= G(X,Σ). Suppose then there exists some loop γ with

|Vγ| > 3 with a cyclic collection Bγ that is uncovered (without loss of generality,

let Bγ be a minimal such uncovered cyclic collection) In particular, let Eγ =

{e0, . . . , eJ−1}. By virtue of γ being uncovered, for each ej ∈ Eγ there exists

a B̃j ∈ Bγ such that for all j ∈ {0, . . . , J − 1} we have ej = B̃j ∩ Vγ, and

by the minimality of Bγ, these {B̃j} are unique and completely exhaust Bγ.

Furthermore, for all B ∈ Σ|Bγ , B ∩ Vγ necessarily also either equals some ej,

is singleton, or is empty.25 Thus, letting (subscripts taken mod-J):

c̃(B) =


ej ∩ ej+1 if ∃ ej s.t. ej = B ∩ Vγ

B ∩ Vγ if |B ∩ Vγ| = 1

B else,

25The loop γ, viewed as a loop in the subgraph Γ(X,Σ|Bγ
), is what is sometimes referred

to as ‘chordless’ in graph theory.
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we obtain a choice correspondence c ∈ W(X,Σ|Bγ ) by an argument identical

to that in the proof of Lemma 2, only for a longer cycle. Clearly ≿c̃ |Eγ is cyclic

and by Lemma 1 this extends to a choice correspondence in c ∈ W(X,Σ) such

that ≿c |Eγ is cyclic, and hence W(X,Σ) ̸= G(X,Σ). Thus, by contraposition,

W(X,Σ) = G(X,Σ) implies the well-coveredness of Σ.
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