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Abstract

We consider the problem of rationalizing choice data by a preference
satisfying an arbitrary collection of invariance axioms. Examples of such
axioms include quasilinearity, homotheticity, independence-type axioms
for mixture spaces, constant relative/absolute risk and ambiguity aversion
axioms, stationarity for dated rewards or consumption streams, separa-
bility, and many others. We provide necessary and sufficient conditions
for invariant rationalizability via a novel approach which relies on tools
from the theoretical computer science literature on automated theorem
proving. We also establish a generalization of the Dushnik-Miller theo-
rem, which we use to give a complete description of the out-of-sample
predictions generated by the data under any such collection of axioms.

1 Introduction

Nearly all economic models restrict, in some manner, the class of preferences
that agents hold. When these restrictions are at odds with the broad, empirical
regularities in how individuals actually evaluate various trade-offs and decisions,
this misspecification may introduce errors which bleed into other aspects of the
model, leading to unrealistic or even outright incorrect predictions (e.g. Mehra
and Prescott 1985).

This motivates a basic need to be able to obtain, in systematic fashion,
the empirical content of the wide variety of additional assumptions on behav-
ior, beyond rationality alone, which are typically imposed in practice. How-
ever, in many cases, characterizations of the testable implications of these extra
assumptions exist only for restrictive, special types of data sets (e.g. price-
consumption data), or remain wholly unknown. Where results do exist, they
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are often obtained through model-specific considerations that leave them unable
to be straightforwardly adapted to apply to other, even closely related sets of
assumptions.1

In this paper we provide a complete characterization the testable implica-
tions of a wide variety of common preference and decision axioms, through a
novel, general approach. Our results apply to arbitrary revealed preference data
sets, and require no assumptions on the domain of choice. To illustrate our ap-
proach, the following example considers the problem of finding a time-stationary
rationalizing preference for simple choice data. It highlights how the additional
structure imposed by stationarity, above and beyond rationality alone, compli-
cates the problem of evaluating consistency.

Example 1. Suppose that in each period, an agent is able to consume a fruit of
their choice from the set F = {Apple,Banana,Cherries,Dragonfruit}, and sup-
pose that we observe an individual’s choice behavior between various discrete-
time, infinite-horizon consumption streams.

We are interested in whether the individual’s choice behavior is consistent
with the maximization of a rational preference that is additionally stationary,
in the sense of Koopmans (1960). A preference over consumption streams is
said to be stationary if, for any pair of streams x and y:

(x1, x2, . . .) ⪰ (y1, y2, . . .) ⇐⇒ (f, x1, . . .) ⪰ (f, y1, . . .),

where f denotes any fruit in F . In other words, a preference is stationary
if, whenever we take two streams, delay them each by one period and insert a
common item in each first period, the preference between them does not reverse.

Suppose now that, for two fixed streams x and y, we observe the following
revealed preference data:

(a, x1, . . .) ≻R (b, y1, . . .)

(b, x1, . . .) ≻R (a, y1, . . .),
(1)

and
(c, y1, . . .) ≻R (d, x1, . . .)

(d, y1, . . .) ≻R (c, x1, . . .).
(2)

This data set is wholly consistent with rational behavior. Indeed, the revealed
preference itself is a transitive binary relation, which more than suffices to ensure
its consistency with the paradigm of rational, optimizing behavior.2

On the other hand, the data are inconsistent with any stationary preference.
To see this, suppose ⪰ is a preference relation that agrees with the observed

1E.g. the techniques of Afriat (1967), which rely crucially on the the functional forms of
particular representations.

2See, e.g., Richter (1966) Theorem 1, or Chambers and Echenique (2016) Theorem 2.6 for
a textbook treatment.
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comparisons (1) and (2). Any such preference must specify a ranking between
x and y. If y ⪰ x, the observations in (1) would imply, under stationarity, that:

(a, x1, . . .) ≻ (b, y1, . . .) ⪰ (b, x1, . . .)︸ ︷︷ ︸
By stationarity

≻

By stationarity︷ ︸︸ ︷
(a, y1, . . .) ⪰ (a, x1, . . .),

and hence that ⪰ was in fact not transitive. However, an identical argument
applied to the observations in (2) yields that no stationary preference which
agrees with the data can rank x ⪰ y either. ■

The subtlety in testing for stationarity in Example 1 arose from the in-
terdependence it imposed between rankings over related pairs of consumption
streams. Perhaps surprisingly, a wide range of decision-theoretic axioms intro-
duce precisely the same type of interdependency.

Suppose now that X is an abstract consumption space, and let M denote a
collection of transformations, each mapping X → X. We say that a preference
⪰ on X is invariant under a transformation ω ∈ M if:

x ⪰ y ⇐⇒ ω(x) ⪰ ω(y),

for every x, y ∈ X. An invariance axiom is then simply the requirement that
a preference be invariant under every transformation in some collection M. In
Example 1, these transformations were the maps

(x1, x2, . . .) 7→ (f, x1, . . .),

for each fruit f ∈ F . However, many other axioms of first-order economic
importance are also of this form. For example, the independence axiom of
Von Neumann and Morgenstern (1947) is an invariance axiom: there, X is a
lottery space and M consists of all transformations of the form:

p 7→ αp+ (1− α)q

for some α ∈ (0, 1] and lottery q. But, by varying our choice of X and M,
we also obtain the standard quasilinearity, homotheticity axioms in consumer
theory, constant absolute or relative risk aversion, and many others as special
cases.

More formally, in this paper we provide complete answers to the two follow-
ing questions:

(Q.1) When is a given revealed preference data set consistent with the maxi-
mization of some preference relation that satisfies an arbitrary collection
of invariance axioms?

(Q.2) What comparisons not observed in the data are nonetheless agreed upon
by every invariant rationalizing preference?3

3Conditional upon the set of such preferences being non-empty.
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Example 1 highlights that even sets of comparisons that are very sparse can
lead to strong (sometimes even impossible-to-fulfill) restrictions on the possible
comparisons a consistent, invariant preference can make.

The source of this complexity is that the addition of a new comparison
between unranked pairs of alternatives necessarily also fixes the comparisons
between each image of this pair, under every transformation in M. We term
these additional implications the knock-on effects of the addition. As illustrated
in Example 1, these extra implications may form transitivity violations, even
when the initial addition itself does not.

In order to account for the potential infinity of knock-on effects, we are
forced to consider sets of simultaneous restrictions on the possible comparisons
a rationalizing preference can make. In turn, these sets of restrictions can be
combined to deduce further constraints which may not emerge directly from the
data.

We introduce a simple, binary operation that we term the ‘collapse,’ that
converts a suitable pair of restriction sets into a new one. This operation may
roughly be viewed as a set-valued analogue of the act of deducing x ⪰ z from
a pair of compatible observations x ⪰ y and y ⪰ z via transitivity. We show
that, no matter the complexity of the environment or structure of the family of
transformations, a simple no-cycle condition, phrased in terms of our collapse
operation, fully characterizes rationalizability by an invariant preference. We
also prove that a related generalization of the transitive closure, again in terms
of our collapse operation, completely characterizes the set of out-of-sample pre-
dictions generated by the data under any given set of invariance axioms.

Our methodology relies intimately on a connection with formal logic. We
first recast the problem of finding a consistent, invariant preference as one of
testing the satisfiability of a set of clauses. We establish that a ‘cycle’ in our sense
may be used to construct a formal proof of unsatisfiability in the accompanying
logical system. To prove the converse, we utilize a result due to Robinson (1965),
which establishes that if a given system of clauses is unsatisfiable, there exists a
proof of this fact with specific combinatorial structure. We then show that any
proof of unsatisfiability, of the precise form guaranteed by Robinson’s theorem,
can always be ‘inverted’ to construct a cycle in our original sense.

The paper proceeds as follows. In Section 2 we formally state our problem
and provide a number of examples of economic axioms covered by our results.
Section 3 considers a special case of our general result—the case in which all the
transformations defining our invariance axiom commute. In this special case,
we show that our general no-cycle condition reduces to a particularly simple
form. In Section 4, we introduce our collapse operation, and provide our gen-
eral characterization of invariant rationalizability. In Section 5 we consider an
extension in which we the transformations in M are instead partial functions,
only defined on subsets of X. We show that, in this broader setting, all of
the results of Section 4 remain true as stated, and provide a number of new
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economic applications. Finally, in Section 6 we provide a novel generalization
of the Dushnik-Miller theorem (Dushnik and Miller 1941) for invariant prefer-
ences, which we use to characterize the set of out-of-sample, or counterfactual,
predictions generated by a the data and a set of axioms. Section 7 concludes.

1.1 Related Literature

The revealed preference literature is too large to adequately survey here, see
Chambers and Echenique (2016) for an overview.4 Classically, Richter (1966)
was the first to characterize rationalizability for the abstract choice model. We
obtain Richter’s original theorem as a special case of our main results (see
Section 3). A similarly classic reference in this vein is Duggan (1999) who retains
an abstract framework but imposes additional restrictions on the interpretation
of ‘rationality.’

Other authors have studied the problem of rationalizing choice data via
preferences with various general structures. Nishimura et al. (2017) study this
problem for continuous and monotone preferences on various spaces. Demuynck
(2009) investigates a general class of ‘closure operators’ on spaces of binary
relations that generalize the transitive closure, and obtains a general extension
result for algebraic structures satisfying certain properties.5 While general,
applying these tools requires non-trivial effort to establish their conditions are
satisfied. In contrast, our results focuses on a smaller mathematical class of
algebraic properties, invariance and monotonicity axioms, but are able to derive
results that are immediately applicable.

Other authors have considered invariant preferences in various contexts. Ok
and Riella (2014, 2021) consider various extension results for invariant preorders
on groups. In contrast, we consider both a more general class of primitive re-
lations and more general notion of invariance.6 Recently Freer and Martinelli
(2022), building off the tools of Demuynck (2009), consider the problem of in-
variant rationalization by incomplete or non-transitive binary relation.7 Dubra
et al. (2004) show that every ‘incomplete’ expected utility (EU) preference may
be completed in such a way as to preserve the EU axioms.

Dushnik and Miller (1941) show that every partial order is equal to the inter-
section of its linear order extensions. Several authors in economics have taken
interest in such unanimity, or Pareto, representation of incomplete preferences.
Abstract approaches include Donaldson and Weymark (1998); Bossert (1999);
Weymark (2000) and Alcantud (2009). In concrete economic environments, sim-
ilar representations can be found in, for example, the theory of expected utility
preferences (Dubra et al. 2004; Gorno 2017), Krepsian style preferences over

4See also Echenique (2020) for a summary of some recent work in this space.
5See Ward (1942) for a general theory of closures.
6Mathematically, our notion of invariance corresponds to invariance of a preference under

an arbitrary semi-group action on the consumption space. For definitions, see Fuchs (2011).
7They also establish an invariant rationalizability result in the special case the collection

of transformations, under composition, forms a linearly ordered group.
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menus (Nehring and Puppe 1999), or rankings of accomplishments (Chambers
and Miller 2018).

We are not the first paper to exploit the connection between revealed prefer-
ence and formal logic. Chambers et al. (2014) study the general form of empirical
content for theories in first-order logic, relating the syntax of first-order theories
to the empirical content via a type of sentence they call “UNCAF” (universal
negation of conjunctions of atomic formulae). Chambers et al. (2017) estab-
lishes that theoretical relations in theories axiomatizable by universal sentences
can be eliminated, resulting in a theory which is itself universally axiomatiz-
able. Such an axiomatization results from enumerating all logical consequences
of the original theory without theoretical relations. Thus, these two papers give
a r.e. method which could in principle enumerate datasets which are inconsis-
tent with a given theory.8 In comparison, our results rely only on the simpler
framework of propositional logic, and provide a more practical method for un-
derstanding inconsistent data. Gonczarowski et al. (2019) show that similar
connections with propositional logic obtain in a variety of economic contexts.
Galambos (2019); Yildiz (2020) investigate the relation between computational
complexity of revealed preference theories and their logical syntax.

Robinson (1965) showed that a certain algorithmic operation on logical
clauses called resolution was sound and refutation-complete. This reduced the
problem of proving a set of clauses to be inconsistent without constructing a
truth table to a discrete search problem. A number of extensions and refine-
ments giving various ‘normal forms’ for proofs were established in the early
artificial intelligence literature to attempt to further reduce the complexity of
this search space (see, e.g., Schöning 2008 for an overview).

Finally, our work presupposes no notion of topology, but many works in eco-
nomics consider topological aspects of the extension problem. Aumann (1962,
1964); Peleg (1970); Levin (1983) are classical references, but the theory has
developed much since then (e.g., Ok 2002; Nishimura et al. 2017).

2 The Model

Let X denote set of alternatives. A preference relation ⪰ is a complete and
transitive binary relation on X. Given a preference relation, we use ≻ and ∼ to
denote its asymmetric and symmetric components, respectively.

Let M denote a set of transformations, each mapping X → X. We say that
a preference relation is M-invariant if, for all x, y ∈ X and all ω ∈ M:

x ⪰ y =⇒ ω(x) ⪰ ω(y), (3)

and
x ≻ y =⇒ ω(x) ≻ ω(y). (1)

8See also Chambers and Echenique (2016), Chapter 13.
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Note that if ω, ω′ ∈ M, then any M-invariant preference also satisfies:

x ⪰ y ⇐⇒ (ω ◦ ω′)(x) ⪰ (ω ◦ ω′)(y) ⇐⇒ (ω′ ◦ ω)(x) ⪰ (ω′ ◦ ω)(y),

and analogously for strict preferences. As such, without loss of generality we
will assume (i) the identity function id ∈ M, and (ii) M is closed under com-
position.9

We consider a pair of observed revealed preference relations as data,
denoted ⟨≿R,≻R⟩, where ≻R is a sub-relation of ≿R.10 We call this tuple an
order pair. These relations could arise through observed choice behavior, e.g.
by defining:

• x ≿R y if x and y belong to a common choice set, from which it was
observed x was chosen.

• x ≻R y if x ≿R y and, in addition, y was not chosen.

However, we explicitly allow for them also encoding other salient properties such
as monotonicity restrictions, by setting x ≻R y if x dominates y in a particular
partial order of interest. We will assume, without loss of generality, that ≿R is
reflexive.

We interpret ⟨≿R,≻R⟩ as data, and seek to understand when it is consistent
with the behavior of an economic actor who chooses to maximize some M-
invariant preference relation ⪰. Formally, an M-invariant preference relation
⪰ rationalizes the data ⟨≿R,≻R⟩ if both (i) ≿R ⊆ ⪰, and (ii) ≻R ⊆ ≻. The
primary result of our paper will be to provide a complete characterization of
those data sets ⟨≿R,≻R⟩ that are rationalizable by an M-invariant preference,
for any choice of X and M. Equivalently, we characterize which data sets
may not be rationalized by any M-invariant preference (for fixed choice of M),
which therefore provides a complete description of the empirical content of such
models.

The transitive closure of our pair ⟨≿R,≻R⟩ is the pair of relations ⟨≿R
⊺ ,≻R

⊺ ⟩,
where x ≿R

⊺ y if and only if there exists some finite sequence x0, . . . , xN ∈ X
such that:

x = x0 ≿R x1 ≿R · · · ≿R xN = y.

Similarly, x ≻R
⊺ y if x ≿R

⊺ y and some relation in the sequence belongs to

≻R. A pair of relations ⟨≿R,≻R⟩ is said to be acyclic if there do not exist
x0, . . . , xN ∈ X such that:

x0 ≿R x1 ≿R · · · ≿R xN ≻R x0.

We refer to such a sequence as a cycle.

9Formally, we assume, without loss of generality, that (M, ◦) forms a semigroup with
identity, or a monoid.

10We do not, however, assume that ≻R is necessarily the asymmetric component of ≿R.
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2.1 Examples of Invariant Preferences

In this section we provide a number of examples of well-known invariance ax-
ioms. All of these correspond to various special cases of our notion of M-
invariance, for particular choices of X and M.

2.1.1 Quasilinearity

Let X = R+ × Z. A preference is said to be quasilinear if:

(t, z) ⪰ (t′, z′) ⇐⇒ (t+ α, z) ⪰ (t′ + α, z′)

for all (t, z), (t′, z′) ∈ X and α ≥ 0. When (t, z) is interpreted as the ‘dated
reward,’ corresponding to the delivery of a prize z to an agent at t units of time
into the future, quasilinearity is also referred to as stationarity (see Fishburn
and Rubinstein 1982). See also the notion of ‘ϕ-additivity’ in Caradonna (2023).

2.1.2 (Generalized) Homotheticity

Let X be a cone in a real vector space. A preference is homothetic if:

x ⪰ y ⇐⇒ tx ⪰ ty

for all x, y ∈ X and all scalars t > 0. Similarly, Cobb-Douglas preferences are
the unique, continuous and monotone preferences on RN

+ satisfying the related
but more general form of invariance:

(x1, . . . , xN ) ⪰ (y1, . . . , yN ) ⇐⇒ (t1x1, . . . , tNxN ) ⪰ (t1y1, . . . , tNyN ),

for all x, y ∈ RN
+ and all (t1, . . . , tN ) ∈ RN

++ (see Trockel 1989).

2.1.3 Mixture Invariance

Suppose that X = ∆(Z), the set of all Borel probability measures on some
metrizable space Z. A preference satisfies the independence axiom of von Neum-
man and Morgenstern (Von Neumann and Morgenstern 1947) if:

µ ⪰ ν ⇐⇒ αµ+ (1− α)η ⪰ αν + (1− α)η

for all α ∈ (0, 1] and η ∈ X.11 If instead X denotes the Anscombe-Aumann
domain F of simple, measurable maps from some measurable space S into ∆(Z),
the independence axiom takes the form:

f ⪰ g ⇐⇒ αf + (1− α)h ⪰ αg + (1− α)h

for α ∈ (0, 1] and some act h ∈ X. Similarly, common weakenings of indepen-
dence such as certainty independence (Gilboa and Schmeidler 1989), weak cer-
tainty independence (Maccheroni et al. 2006), worst independence (Chateauneuf
and Faro 2009), risk independence (Cerreia-Vioglio et al. 2011) and so forth are
all of this form.

11More generally, this form of invariance may be defined for any mixture space. See, e.g.,
Herstein and Milnor (1953).
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2.1.4 Stationarity

Let X = ZN denote the set of all infinite horizon consumption streams taking
values in some set of prizes Z. A preference on X is said to be stationary in the
sense of Koopmans (1960) if:

(x1, x2, . . .) ⪰ (x′
1, x

′
2, . . .) ⇐⇒ (z, x1, x2, . . .) ⪰ (z, x′

1, x
′
2, . . .)

for all z ∈ Z. See also Epstein (1983).

2.1.5 Convolution Invariance

Suppose X consists of all lotteries on R with bounded support. Mu et al. (2021)
consider continuous weak orders on X that are monotone with respect to first-
order stochastic dominance, and invariant under convolutions:

µ ⪰ ν ⇐⇒ µ ∗ η ⪰ ν ∗ η,

for all η ∈ X.12 A preference on X is said to exhibit constant absolute risk
aversion (e.g., Safra and Segal 1998) if:

µ ⪰ ν ⇐⇒ µ ∗ δα ⪰ ν ∗ δα

for all α ∈ R, where δα denotes the Dirac measure centered at α.13

2.1.6 Product & Dilution Invariance

LetX consist of all finite Blackwell experiments on some fixed, finite set of states
of the world Θ. Thus an element of X is a tuple

(
S, {µθ}θ∈Θ

)
, where S is a finite

set of signals, and each µθ is a probability measure on S. Pomatto et al. (2023)
consider ‘costliness’ orderings over X that are invariant under two varieties of
transformations: the formation of products, and of so-called dilutions. In this
context, products of Blackwell experiments formalize the idea of running two
simultaneous and independent experiments. The α-dilution of an experiment,
denoted α ·

(
S, {µθ}θ∈Θ

)
, is the experiment

(
S ∪ {o}, {µ′

θ}θ∈Θ

)
, where o is a

completely uninformative signal, and (i) µ′
θ(A) = αµθ(A) for all A ⊆ S, and

µ′
θ({o}) = 1− α. This corresponds to invariance under:(
S, {µθ}θ∈Θ

)
⪰

(
S′, {νθ}θ∈Θ

)
⇐⇒

(
S×T, {µθ⊗ηθ}θ∈Θ

)
⪰

(
S′×T, {νθ⊗ηθ}θ∈Θ

)
for all (T, {ηθ}θ∈Θ) ∈ X, and:(

S, {µθ}θ∈Θ

)
⪰

(
S′, {νθ}θ∈Θ

)
⇐⇒ α ·

(
S, {µθ}θ∈Θ

)
⪰ α ·

(
S′, {νθ}θ∈Θ

)
for all α ∈ (0, 1].

12The term ‘additive’ in the paper’s title refers to this property when the preference is
equivalently regarded as being defined over (bounded) random variables.

13Similarly, constant relative risk aversion is also a special case of M-invariance, where M
consists of the transformations which multiplicatively scale the support of a lottery.
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Figure 1: An illustration of Example 2. The revealed preference is denoted in blue. A
hypothetical comparison between (b, 0) and (a, 0) is shown (orange solid), and the resulting
knock-on effects under M that would arise from adding this comparison (orange dashed).
Note that while the comparison between (b, 0) and (a, 0) itself creates no cycles, its knock-on
effects do.

2.2 Knock-On Effects

Consider an analyst who observes no revealed preference between two alterna-
tives, x and y. As part of the process of attempting to construct an M-invariant
rationalizing preference ⪰ for the data, the analyst wishes to ascribe some rela-
tion between x and y.

However, if the analyst wishes to add x ⪰ y, since ⪰ is required to be M-
invariant, they are also compelled to add, in addition, every relation of the form
ω(x) ⪰ ω(y), for each ω ∈ M. We term these additional relations the knock-
on effects of adding x ⪰ y. Even when adding x ⪰ y to the data leads to
no inconsistency, these knock-on effects may themselves lead to the creation of
cycles.

Example 2. Consider a domain of dated rewards featuring two prizes, an apple
a and a banana b, that can be delivered to a consumer at any number of days
in the future, i.e. X = {a, b} × {0, 1, . . .}. We observe that a subject prefers:

(a, 1) ≻R (b, 2) and (a, 2) ≻R (b, 1).

Let M denote all transformations of the form (z, t) 7→ (z, t+ n) for each n ≥ 0.
A preference is M-invariant if and only if it is is stationary, in the sense of
Fishburn and Rubinstein (1982).

Suppose we wish to extend this data set to incorporate a preference between
the two prizes today, i.e. (a, 0) and (b, 0). Since the data itself is transitive,
but makes no comparison between these alternatives, there exist rationalizing
preference relations ranking both (a, 0) ≻ (b, 0) and (b, 0) ≻ (a, 0).14 However,
every stationary (i.e. M-invariant) rationalization must rank (a, 0) ≻ (b, 0). To
see this, note that if any stationary rationalization ranked (b, 0) ⪰ (a, 0), as
knock-on effects it would necessarily also rank (b, 1) ⪰ (a, 1) and (b, 2) ⪰ (a, 2).
Thus, in this extension, we would have:

(a, 1) ≻ (b, 2) ⪰ (a, 2) ≻ (b, 1) ⪰ (a, 1),

implying it could not be a preference relation. Thus every stationary rational-
ization must rank (a, 0) ≻ (b, 0). ■

14See, e.g., Dushnik and Miller 1941.

10



3 Characterizing Rationalizability: The Case of
Commuting Transforms

In this section, we consider the special case in which each pair of transformations
in M commute, i.e.:

(ω ◦ ω′)(x) = (ω′ ◦ ω)(x)

for all x ∈ X and ω, ω′ ∈ M. Every example in Section 2.1.1, 2.1.2, and 2.1.5
is of this form, as are often families of transformations which depend only on
a single real scalar, such as mixing under various weights with a fixed act or
lottery (e.g. worst-independence, Section 2.1.3). In such cases, we refer to M
as a commutative family.

Let R ⊆ X ×X be an arbitrary binary relation. We define the M-closure
of R, denoted RM via:

ω(x) RM ω(y) ⇐⇒ x R y,

for some ω ∈ M. Since we have assumed that the identity function id ∈ M, by
setting ω = id we obtain that R ⊆ RM.

Consider now the data ⟨≿R,≻R⟩. Our first main result says that, when M is
a commutative family, the data ⟨≿R,≻R⟩ are rationalizable by an M-invariant
preference relation if and only if its M-closure is acyclic.

Theorem 1. Let X be a set, and M an arbitrary family of commuting transfor-
mations. Then ⟨≿R,≻R⟩ is rationalizable by an M-invariant preference relation
if and only if

〈
≿R

M,≻R
M

〉
is acyclic.

Note that when M = {id}, M is clearly a commutative family, and that
every preference is trivially M-invariant. Thus Theorem 1 strictly subsumes
the classical characterization of Richter (1966). In Appendix B, we explore
connections between Theorem 1 and various well-known modifications of the
generalized axiom of revealed preference in the special case of price-consumption
data.

3.1 Application: Probabilistic Sophistication

Let S denote a finite set of states of the world, and X = 2S the power set of S.
Elements of X correspond to events. Consider a complete and transitive order
⪰ on X, which we interpret as an agent’s subjective assessment of the relative
likelihood of events (i.e. A ⪰ B denotes that the agent subjectively believes that
A is more likely than B).

Such an ordering is said to be a qualitative probability if, for all events
A,B,C ∈ X with C disjoint from A ∪B,

A ⪰ B ⇐⇒ A ∪ C ⪰ B ∪ C,
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and in addition, A ⊆ B implies B ⪰ A, and S ≻ ∅. We refer to a qualitative
probability as probabilistically sophisticated if it can be represented by a
probability measure.

Kraft et al. (1959) exhibit a qualitative probability over a five element state
space which is not probabilistically sophisticated, disproving a conjecture of
de Finetti (1951). Using results on linear inequalities, they obtain an infinite
system of ‘cancellation’ conditions, which jointly characterize probabilistic so-
phistication. Despite the fact these conditions are not invariance axioms, by
regarding X as a subset of a richer domain, we may nonetheless use Theorem 1
to provide a simple test (cf. Epstein 2000).

Let ZS denote the set of all integer-valued functions on S, and M the com-
mutative family consisting of the transformations f 7→ f + g, for g ∈ ZS . By
identifying elements of X with their indicator functions, we may regard X as
a subset of ZS , and hence any order ⪰ on X as an (incomplete) order ⪰∗ on
ZS . Any probability measure µ on S defines a (i) complete, (ii) transitive, (iii)
increasing, and (iv) M-invariant order ⪰ on ZS via:

f ⪰ g ⇐⇒
∫

f dµ ≥
∫

g dµ.

Conversely, however, not every order on ZS satisfying (i) - (iv) can be repre-
sented by such a functional.15 Nonetheless, every ⪰∗ whose M-closure is acyclic
can be extended to a preference on ZS admitting such a representation.16

Corollary 1. A qualitative probability ⪰ on 2S is probabilistically sophisticated
if and only if the M-closure of ⪰∗ is acyclic.

In light of Corollary 1, Kraft et al.’s counterexample (Kraft et al. 1959, p.
414) must feature some cycle in itsM-closure. Explicitly, their ordering includes
the relations:

114 ≺∗
1235, 123 ≺∗

115, 125 ≺∗
134, and 135 ≺∗

12

on ZS , where S = {1, . . . , 5}. Thus in the M closure of ⪰∗, we obtain:

114 ≺∗M
1235 ≺∗M

115 + 15 ≺∗M
11345 − 12 ≺∗M

1124 − 12 = 114,

confirming that ⪰ is not probabilistically sophisticated.

15Such orders may fail to be Archimedean in the sense of Krantz et al. (1971), p. 73; for
example, the lexicographic order on Z2 satisfies (i) - (iv), but has no representation of this
form.

16This follows from Theorem 1.4 of Scott (1964). Formally, Scott shows that a necessary
and sufficient condition for ⪰ to be probabilistically sophisticated is for ⪰∗ to be able to be
extended into a so-called “strictly monotonic” order (Scott 1964, p. 237). It is straightforward
to show any M-invariant preference on ZS is strictly monotonic in Scott’s sense.
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3.2 Preorder extensions

One special case of our general problem (Q.1) is when an incomplete preference,
or preorder (i.e. a reflexive and transitive binary relation ⪰ on some set X),
satisfying certain invariance axioms, can be extended into a preference relation
with the same properties. In this subsection, we illustrate how Theorem 1 may
be used to obtain extension results of this form for preorders satisfying a number
of natural economic properties.

3.2.1 Additive Preorder Extensions

Let V denote a real vector space, and C ⊆ V be a cone. Suppose that X ⊆ V is
closed under addition by vectors in C, i.e. if x ∈ X and c ∈ C, then x+ c ∈ X.
Let M denote all transformations of the form x 7→ x + c, for c ∈ C. In this
circumstance, an M-invariant preference is said to be C-additive.

Corollary 2. Every C-additive preorder ⪰ admits a C-additive preference ex-
tension.

Corollary 2 contains a number of well-known special cases, including:

(i) Quasilinearity over classical consumption spaces, i.e. V = Rn+1, C =
{(a, 0, . . . , 0) : a ≥ 0} and X = Rn+1

+ .

(ii) Additive preferences over a vector space, i.e. V is a real vector space and
V = X = C.

(iii) CARA preferences over compactly supported monetary lotteries, i.e. X =
V = L∞, and C denotes the equivalence classes of almost-everywhere
constant functions. (Here, the preorder ⪰ is additionally presumed to be
indifferent between any random variables which coincide in law.)

3.2.2 Homothetic preorder extensions

Next, let X denote a cone in a real vector space. A preorder is homothetic if, for
every x, y ∈ X and λ > 0, x ⪰ y implies λx ⪰ λy, with a corresponding state-
ment for strict preference. It has been known since at least Demuynck (2009)
that if X is a cone in a Euclidean vector space, then every montonic and ho-
mothetic preorder has a monotonic and homothetic weak order extension. The
following corollary establishes a modest generalization of this result, removing
both the assumption of monotonicity, and finite dimensionality:

Corollary 3. Every homothetic preorder has a homothetic preference extension.

DeMuynck’s result follows as any extension of a monotonic preorder is by defi-
nition monotonic as well.

13



3.2.3 An Algebraic Version of Dubra et al. (2004)

Let (Y,Σ) be some measurable space and let ∆(Y ) be the set of countably
additive probability measures on (Y,Σ). We say that a preorder ⪰ on ∆(Y )
satisfies rational independence if, for all p, q, r ∈ ∆(Y ) and α ∈ Q ∩ (0, 1],
p ⪰ q if and only if αp+ (1− α)r ⪰ αq + (1− α)r.

Suppose that ⪰ is a rationally independent preorder. We define an extension
⪰∗ to the set of all signed measures of bounded variation as follows: let ν ⪰∗ ν′

if and only if there exists some α ∈ Q, α > 0, and p, q ∈ ∆(Y ) with p ⪰ q, such
that (ν − ν′) = α(p− q).

This extension is well-defined, as if ν−ν′ = α(p−q) = β(r−s) and p ⪰ q, by
rational independence and transitivity, it cannot be s ≻ r. Thus, in particular,
⪰∗ may be regarded as extending ⪰.17 Moreover, if ν1 ⪰∗ ν2 ⪰∗ ν3, it is
straightforward to establish that ν1 ⪰∗ ν3. Thus ⪰∗ is itself transitive.

Let M denote the maps ν 7→ ν+ ρ, for each signed measure ρ. By construc-
tion, we have ν ⪰∗ ν′ if and only if ν + ρ ⪰∗ ν′ + ρ, for any ρ. Thus ⪰∗ is
its own M-closure. Since M is a commutative family, Theorem 1 provides the
existence of an M-invariant extension, ⪰∗∗, of ⪰∗.

Finally, note the restriction of ⪰∗∗ to ∆(Y ) itself satisfies rational inde-
pendence: if p ⪰∗∗ q and α ∈ Q ∩ (0, 1], then we must have αp ⪰∗∗ αq.18

Consequently, we obtain that αp + (1 − α)r ⪰′ αq + (1 − α)r, as desired, with
an analogous statement holding for strict preference.

Corollary 4. Every rationally independent preorder has a rationally indepen-
dent preference extension.

4 The General Case

4.1 Overview

In the preceding section, Theorem 1 showed that when the transformations inM
commute with each other, a simple generalization of Richter (1966)’s acyclicity
condition characterizes rationalizability by anM-invariant preference. However,
when M is not a commutative family, this conclusion fails. We return to the
example from the introduction.

Example 3. Let a, b, c, d ∈ Z be prizes, and suppose X consists of all infinite
horizon consumption streams taking values in Z, i.e. X = ZN. Let M consist of
all finite compositions of the transformations {ωz}z∈Z which append the prize
z to the start of a consumption stream. Here, M-invariance corresponds to the
stationarity of a preference in the sense of Koopmans (1960).

17To be formal, ⪰∗ extends the image of ⪰ under the inclusion map taking ∆(Y ) into the
space of signed measures.

18This follows from a straightforward induction argument.
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Let x, y ∈ X be arbitrary consumption streams, and recall in Example 1 we
observed:

(a, x1, . . .) ≻R (b, y1, . . .)

(b, x1, . . .) ≻R (a, y1, . . .),
(1)

and
(c, y1, . . .) ≻R (d, x1, . . .)

(d, y1, . . .) ≻R (c, x1, . . .).
(2)

This relation is vacuously transitive, as is its M-closure. However, as noted in
Example 1, it cannot be rationalized by any stationary preference. Notably, this
is purely a consequence of the failure of these transformations to commute.

To see this, consider an abstract domain X with alternatives x and x′, and
let M be generated by all finite compositions of four abstract transformations,
ωa, ωb, ωc, ωd, each mapping X → X. In this reformulation, our data relation is
again given by:

ωb(x) ≻R ωa(y) ωa(x) ≻R ωb(y)

and
ωd(y) ≻R ωc(x) ωc(y) ≻R ωd(x),

but crucially, suppose now that these four transformations were to commute. It
straightforwardly follows that, in the M-closure, we now have a cycle:

ωad(x) ≻R
M ωbd(y) ≻R

M ωbc(x) ≻R
M ωac(y) ≻R

M ωad(x),

where ωij ≡ ωi ◦ ωj . Thus the inability of the M-closure to detect obstructions
to rationalizability arise solely from the failure of the transformations in M to
commute. ■

The essence of Example 3 is that, when M does not consist of commuting
transformations, we may be able to falsify rationalizability only on the basis of
obtaining mutually unsatisfiable out-of-sample restrictions on the comparisons
any extension must make.

In this section, we introduce a strengthening of the transitive closure. In
the classical setting (i.e. when M = {id}) the transitive closure encodes all the
restrictions on out-of-sample comparisons that any rationalizing preference must
make. In contrast, the potential infinitude of knock-on effects require our notion
of closure to operate not on relations between single pairs of alternatives, but
rather on sets of simultaneous constraints, jointly imposed by the data and the
structure of M. We show that this generalized notion of closure characterizes
both (i) the existence of M-invariant rationalizations, for any choices of X,
M, and ⟨≿R,≻R⟩, as well as (ii) the out-of-sample predictions generated by
M-invariance, just as the transitive closure does in the classical setting.
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(a) A broken cycle with N = 3.
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ω3x3
ω3y3
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(b) A forbidden subrelation.

Figure 2: A broken cycle (blue) and an associated forbidden subrelation for the broken
cycle (dashed orange). Here, the illustrated forbidden subrelation is given by W = S ={
(y1, x1), . . . , (y3, x3)

}
.

4.2 Broken Cycles & Forbidden Subrelations

For some N ≥ 1, let ω1, . . . , ωN ∈ M, and x1, y1, . . . , xN , yN ∈ X be a sequence
of ≿R-unrelated pairs (i.e. xi and yi are ≿R-unrelated). We term a collection
of relations:

ω1(x1) ≿
R
⊺ ω2(y2)

ω2(x2) ≿
R
⊺ ω3(y3)

...

ωN−1(xN−1) ≿
R
⊺ ωN (yN )

ωN (xN ) ≿R
⊺ ω1(y1),

(4)

a broken cycle. If any of the relations ≿R
⊺ also belongs to ≻R

⊺ , we say (4)
forms a strict broken cycle. Any broken cycle (strict or otherwise) implies
joint restrictions on the possible comparisons any M-invariant rationalization
may make between the xi and yi. To formalize this, we say an order pair ⟨W,S⟩
defines a forbidden subrelation for the broken cycle (4) if:

(i) The relation W equals the set of all distinct pairs (yi, xi).
19

(ii) If the broken cycle is not strict, then ∅ ⊊ S ⊆ W .20

The first relation, W , reflects restrictions on the possible weak comparisons
any extending preference can make. Similarly, S encodes restrictions pertaining
to strict comparisons. Together, these relations capture set-valued restrictions
on the extension problem: if a binary relation ⪰ were to extend some forbidden

19The definition of a broken cycles allows that, for some i ̸= j, it may be the case that
(yi, xi) = (yj , xj).

20Recall that by definition of an order pair, S ⊆ W , regardless of whether (4) is strict.
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subrelation ⟨W,S⟩, it would imply that (i) W ⊆ ⪰, and (ii) S ⊆ ≻, and hence
that ⪰ necessarily contains a cycle. Informally, a forbidden subrelation ⟨W,S⟩
may be read as the restriction:

“Cannot simultaneously have · · · , yij ⪰ xij , · · ·︸ ︷︷ ︸
Relations in W\S

and · · · , yik ≻ xik , · · ·︸ ︷︷ ︸
Relations in S

.”

As the following example shows, these order pairs capture richer systems of
restrictions than does the transitive closure.

Example 4. Suppose first that we observe only x ≿R y and y ≿R z. Thus
x ≿R

⊺ z, which itself defines a (non-strict) broken cycle, where N = 1. From

this, we obtain W =
{
(z, x)

}
and S =

{
(z, x)

}
as a forbidden subrelation,

encoding that no extension of the data can rank z ≻ x.21

If instead we observed that ω(x) ≿R y and y ≿R ω(z), by analogous reason-
ing we would obtain W =

{
(z, x)

}
and S =

{
(z, x)

}
again as a forbidden subre-

lation, as well as W ′ =
{
(ω(z), ω(x))

}
and S′ =

{
(ω(z), ω(x))

}
reflecting both

the direct implication of transitivity, that no extension can rank ω(z) ≻ ω(x),
as well as the knock-on effects of this observation.

More generally, however, it can be the case that multiple knock-on effects
arising from even a single added comparisons can ‘complete’ a broken cycle. The
value of forbidden subrelations is that these capture the restrictions arising from
these knock-on effects. In Example 3, we observed, e.g., that ωx;(σ) ≻R ωx(σ

′)
and ωx(σ) ≻R ωx′(σ′). These comparisons form a (strict) broken cycle, where
x1 = x2 = σ and y1 = y2 = σ′. From this, we obtain as a forbidden subrelation
W =

{
(σ′, σ)

}
and S = ∅. The fact W and S have cardinality less than the

number of ‘gaps’ N of the broken cycle reflects the fact that multiple knock-on
effects, arising from adding the relation in W , would jointly complete the broken
cycle. ■

4.3 The Collapse Operation

Given the data ⟨≿R,≻R⟩, let F denote the set of all forbidden subrelations
obtained from broken cycles. While pairs in F reflect the rich, set-valued con-
straints imposed by the algebraic structure of M on the extension problem,
there are, nonetheless, further constraints that need not arise directly from bro-
ken cycles in this fashion.

21More generally, for any x1, . . . , xN ∈ X, since ≿R is assumed reflexive, the collection of
relations:

x1 ≿R x1

...

xN ≿ xN

defines a broken cycle, whose forbidden subrelations are those cyclic binary relations x1 ⪰
· · · ⪰ xN ⪰ x1, with at least one strict component, i.e. the cycles over x1 to xN .
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Example 5. Suppose, based on two broken cycles, we obtain restrictions:

W1 =
{
(x, y), (x′, y′)

}
S1 =

{
(x′, y′)

}
and

W2 =
{
(y, x), (x′′, y′′)

}
S2 =

{
(y, x)

}
,

i.e. restrictions saying that we cannot simultaneously have x ⪰ y and x′ ≻ y′ in
any extension (corresponding to ⟨W1, S1⟩) and similarly, that we cannot have
y ≻ x and x′′ ⪰ y′′ simultaneously (from ⟨W2, S2⟩).

Since every rationalizing preference relation must either rank x ⪰ y or y ≻ x,
these two pairs imply an additional, indirect restriction on the extension prob-
lem: no extension can simultaneously rank both x′ ≻ y′ and x′′ ⪰ y′′. Should
any complete, extension contain both these comparisons, it must necessarily
also rank either x ⪰ y or y ≻ x and hence extend either ⟨W1, S1⟩ or ⟨W2, S2⟩,
and therefore cannot be transitive. This indirect restriction can be expressed as
the order pair:

W̃ =
{
(x′, y′), (x′′, y′′)

}
S̃ =

{
(x′, y′)

}
,

formed by deleting all instances of the mutually exhaustive pair, and taking the
union of the respective remaining relations.

In fact, nothing material in this argument would be affected if, instead of
⟨W1, S1⟩ and ⟨W2, S2⟩, we instead observed:

W ′
1 =

{
(ω(x), ω(y)), (x′, y′)

}
S1 =

{
(x′, y′)

}
and

W2 =
{
(ω′(y), ω′(x)), (x′′, y′′)

}
S2 =

{
(ω′(y), ω′(x))

}
,

corresponding to the restrictions “cannot have ω(x) ⪰ ω(y) and x′ ≻ y′ simul-
taneously,” and “cannot have ω′(y) ≻ ω′(x) and x′′ ⪰ y′′ simultaneously.” Any
M-invariant rationalization must still rank either x ⪰ y or y ≻ x and hence the
same indirect restriction ⟨W̃ , S̃⟩ obtains. ■

To formalize the observation underpinning Example 5, we introduce a partial
binary operation on finite order pairs. Formally, we say a finite order pair ⟨W̃ , S̃⟩
is a collapse of two pairs ⟨W1, S1⟩ and ⟨W2, S2⟩ if:
(i) For some ω, ω′ ∈ M and x, y ∈ X,(

ω(x), ω(y)
)
∈ Wi \ Si and

(
ω′(y), ω′(x)

)
∈ Wj ,

where i, j ∈ {1, 2} are distinct.

(ii) The relations W̃ and S̃ are given by:

W̃ =
[
Wi \

(
ω(x), ω(y)

)]
∪
[
Wj \

(
ω′(y), ω′(x)

)]
and

S̃ = Si ∪
[
Sj \

(
ω′(y), ω′(x)

)]
,

where we intentionally omit the curly braces on singleton sets of pairs to
conserve notation.
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Condition (i) requires that, modulo the transformations ω and ω′, the two order
pairs contain a mutually exhaustive pair of rankings of two alternatives, x and y.
This requires that pair ⟨Wj , Sj⟩ contain a restriction of the form ω′(y) ⪰ ω′(x),
for some ω′, but allows ⟨Wi, Si⟩ to contain a restriction of the form ω(x) ⪰ ω(y)
or ω(x) ≻ ω(y).22

Condition (ii) then defines each relation in the collapse as the union of the
respective ‘parent’ relations, minus the mutually exhaustive pair. Generally, an
incomplete, M-invariant extension of ⟨W̃ , S̃⟩ need not extend either ⟨W1, S1⟩ or
⟨W2, S2⟩. However, such an extension can never be completed to anM-invariant
preference, as such a preference rank x and y eventually, at which point it must
necessarily extend one of the initial forbidden subrelations, creating a cycle.

By repeatedly collapsing restriction order pairs, we are able to uncover fur-
ther ‘indirect’ restrictions on the extension problem. To formalize this idea, let
F0 = F denote the set of all forbidden subrelations arising from some broken
cycle in the data, and inductively define:

Fn =
{
⟨W,S⟩ : ⟨W,S⟩ is collapse of pairs in Fn−1

}
∪ Fn−1.

Let:
F∗ =

⋃
n≥0

Fn.

We say that the data ⟨≿R,≻R⟩ are strongly acyclic if the empty order pair
⟨∅,∅⟩ ̸∈ F∗.

Example 6. Consider again the revealed preference in Example 3. Equations
(1) and (2) define broken cycles, which respectively yield forbidden subrelations
W1 =

{
(σ′, σ)

}
and W2 =

{
(σ, σ′)

}
, with S1 = S2 = ∅. The collapse of these

pairs is precisely W̃ = S̃ = ∅, and hence the data fail to be strongly acyclic.
This reflects our earlier observation that even though the data are transitive
(and have an acyclic M-closure), any stationary rationalization must compare
σ and σ′, and hence complete one of the broken cycles via the knock-on effects
arising from this comparison. ■

Strong acyclicity is a necessary condition for M-invariant rationalizability:
if the empty pair belongs to F∗, then it belongs to some Fn, and hence through
some finite sequence of collapses, can be derived from broken cycles in the data.
Since every extension of the data must necessarily extend the empty pair, this
means that no possible extension of the data can ever be completed without
creating a cycle at some stage along the way.

A priori, however, it is unclear whether F∗, the set of restrictions generated
by repeated application of the collapse, reflects all the restrictions on the ex-
tension problem. The following theorem is the primary result of this paper. It

22This asymmetry in the treatment of Wi and Wj ensures that at least one of restriction on
x and y is non-strict. If, e.g., Wi said “cannot have x ≻ y and Wj said “cannot have y ≻ x,
these restrictions would not be mutually exhaustive.
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says that M-acyclicity is not only necessary, but in fact fully characterizes the
existence of an M-invariant rationalizing preference, without any assumptions
on the structure of the domain X, transformations M, or data ⟨≿R,≻R⟩.

Theorem 2. The data ⟨≿R,≻R⟩ are strongly acyclic if and only if they are
rationalizable by an M-invariant preference.

5 Invariance Under Partial Transformations

Thus far, we have defined an an invariance with respect to a family of trans-
formations, each mapping X → X. However, a number of natural, economic
axioms are of a slightly weakened form, requiring invariance under a given trans-
formation ω to hold only for pairs of alternatives belonging to a subset Dω ⊆ X
which, crucially, does not depend on the preference itself.23

Formally, let ∅ ⊆ Dω ⊆ X and ω : Dω → X. We say a preference relation
⪰ is invariant under ω if, for all x, y ∈ Dω:

x ⪰ y ⇐⇒ ω(x) ⪰ ω(y).

We term such an ω a partial transformation of X, and refer to Dω as the
domain of ω. Given two partial transformations ω and ω′, their composition
is the partial transformation ω′ ◦ω : Dω′◦ω → X, where Dω′◦ω consists of those
alternatives in Dω whose image under ω belongs to Dω′ .24 Finally, given a
collection M of partial transformations, we say that ⪰ is M-invariant if it is
invariant under every partial transformation in M. Without loss of general-
ity, we will again assume that any such collection M (i) contains the identity
transformation X → X, and (ii) is closed under composition.

5.1 Examples of Partial Invariance Axioms

Despite their technical nature, it is perhaps surprising that a number of classical,
economically important axioms may be regarded as invariances with respect to
families of partial transforms.

5.1.1 Ordinal Additivity

Let S denote a set of states of the world, and let X = 2S . For each A ∈ X, let:

DA =
{
B ∈ X : A ∩B = ∅

}
,

and define ωA : DA → X via ωA(B) = A ∪B. Recall a complete and transitive
binary relation ⪰ on X, representing a subjective ‘likelihood ordering’ over the
events X, defines a qualitative probability if it is invariant under every partial
transformation ωA (e.g. de Finetti 1951; Kraft et al. 1959), and is additionally
monotone with respect to set inclusion and nontrivial.

23This distinguishes them from, e.g., convexity or betweenness-type axioms.
24Note that Dω′◦ω may be empty. In this case, any preference is trivially invariant with

respect to ω′ ◦ ω.
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5.1.2 Additive Separability

Let X = ×i∈IXi. For any subset A ⊆ I, and any x, y ∈ X, we define xAy ∈ X
via:

(xAy)i =

{
xi if i ∈ A

yi if i ̸∈ A
.

A preference relation ⪰ on X is said to be separable (Leontief 1947; Debreu
1959; Luce and Tukey 1964) if, for all A ⊆ I, and all x, y, z, z′ ∈ X,

xAz ⪰ yAz ⇐⇒ xAz
′ ⪰ yAz

′.

Separability may equivalently be expressed as an invariance axiom. First, let:

Dz
A = {x ∈ X : x = xAz},

denote those elements of X equal to z on A. For each A ⊆ I and z, z′ ∈ X,
define ωz→z′

A : Dz
A → X via:

ωz→z′

A (xAz) = xAz
′.

In other words, ωz→z′

A takes in an element of X equal to z on A, and replaces its
values on A instead with the restriction of z′. LettingM denote these transforms
(and their compositions), we obtain that a preference is M-invariant if and only
if it is separable.

5.1.3 Savage’s P2

Closely related to Section 5.1.2, let S denote a set of states of the world, X a
set of consequences, and X = XS the set of all acts mapping S → X . For any
three acts f, g, and h in X and A ⊆ S, we analogously define:

fAh =

{
f(s) if s ∈ A

h(s) if s ̸∈ A.

A preference relation ⪰ on X satisfies Axiom P2 (Savage 1954) if and only if,
for all f, g, h, h′ ∈ X and A ⊆ S, we have:

fAh ⪰ gAh ⇐⇒ fAh
′ ⪰ gAh

′.

By precisely the same construction as in Section 5.1.2 we may rephrase this
condition as an invariance axiom for a suitable family of partial transformations.

5.1.4 Comonotonic Independence

Let {1, . . . , S} denote a finite set of states of the world and X = RS the set of
all monetary acts. Two acts f, g ∈ X are said to be comonotonic if it is never
the case that:

f(s) > f(s′) and g(s) < g(s′)
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for any s, s′ ∈ S. A preference relation satisfies comonotonic independence
(Schmeidler 1989) if, for any pairwise comonotonic acts f, g, h ∈ X and α ∈ (0, 1]
we have:

f ⪰ g ⇐⇒ αf + (1− α)h ⪰ αg + (1− α)h.

Let S denote the set of all permutations of {1, . . . , S}. For σ ∈ S, let:

Dσ =
{
f ∈ X : f(i) ≥ f(j) ⇐⇒ σ(i) > σ(j)

}
.

For each σ ∈ S, α ∈ (0, 1] and h ∈ Dσ, define the transformation:

ωα,h
σ : Dσ → X

via f 7→ αf +(1−α)h. Letting M denote the collection of all such transforma-
tions and their compositions, we obtain that a preference is M-invariant if and
only if it is comonotonic independent.

5.2 Strong Acyclicity and Partial Transforms

The primary result of this section is that precisely the same notion of strong
acyclicity, as defined in Section 4, characterizes M-invariant rationalizability
for arbitrary families of partial transformations as well. Formally, this simply
follows from observing that no definition or proof step required each transforma-
tion ω ∈ M to have Dω = X. However, we will illustrate this lack of dependence
on domain in more detail.

Firstly, consider a broken cycle such as in (4). By definition, broken cycles
require only that each ωi(xi) and ωi(yi) are defined (i.e. xi, yi ∈ Dωi). Given any
well-defined broken cycle, obtaining its forbidden subrelations does not require
us to apply any transform, partial or otherwise. Instead, rather, we take only
pre-images: if ωi(yi) and ωi(xi) are gaps in a broken cycle, then our forbidden
subrelation contains the pair (yi, xi). This passage is always well-defined so long
as ωi(yi) and ωi(xi) are. Therefore, even when M contains partial transforms,
we may obtain forbidden subrelations from broken cycles in a precisely the same
manner.

Suppose now that we have a two finite order pairs ⟨W1, S1⟩ and ⟨W2, S2⟩.
As with the definitions of forbidden subrelations, the collapse operation never
requires us to apply a common transform to two alternatives, but rather allows
us to regard two pairs as ‘mutually exhaustive’ so long as they are both images
of (up to) two different transforms. Once again, this is unaffected by incom-
pleteness of the domain of these transformations. Thus the collapse operation,
and with it the ‘collapsed closure’ F∗ also remain well-defined, even when M
contains partial transformations.

Despite these observations, it is unclear however, a priori, whether letting
M consist of partial transformations can potentially lead to novel obstructions
to rationalizability. The following theorem, whose proof follows immediately
from the observation that the proof of Theorem 2 remains valid for the case of
partial transforms, establishes that this is not the case.
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Theorem 3. Let M consist of partial transformations. Then the data ⟨≿R,≻R⟩
are strongly acyclic if and only if they are rationalizable by an M-invariant
preference.

We illustrate this result below, in the context of the one-urn paradox of Ellsberg
(1961).

Example 7 (One-Urn Ellsberg Paradox). There is an urn containing 90 balls.
30 of these balls are red, and the remainder are either yellow, or black. A ball
is to be (uniformly) randomly drawn from the urn; let S = {sr, sy, sb} denote
the color of this ball, and let X = 2S .

Suppose we elicit that a subject believes:

sr ≻R sb

and
sr ∪ sy ≻R sr ∪ sy

where to conserve on notation we have omitted curly braces from singleton
sets, and ⪰R denotes ‘subjectively deemed more likely.’ These observations are
trivially inconsistent with any qualitative probability on X. To see this via
Theorem 3 observe that, in the notation of Section 5.1.1, we have:

sr ≻R sb

and
ωsy (sb) ≻R ωsy (sr),

each of which form (trivial) broken cycles, yielding forbidden subrelations:

W1 =
{
(sb, sr)

}
S1 = ∅

and
W2 =

{
(sr, sb)

}
S2 = ∅,

and whose collapse is precisely ⟨∅,∅⟩. Thus the data fail to be strongly acyclic,
and hence are inconsistent with any qualitative probability. ■

6 Out-of-Sample Predictions

In light of Theorem 2, the collapse operation provides a purely algorithmic
means of evaluating whether or not an M-invariant rationalizing preference
exists for the data. However, the collapse is defined over sets of restrictions,
rather than the data itself. In particular, it does not speak to which comparisons
every M-invariant, rationalizing preference must agree upon. When the data
are rationalizable by at least one such preference, we term these comparisons
the out-of-sample predictions generated by the model and data.
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When M = {id}, every (M-invariant) rationalizing preference ⪰∗ ranks
x ⪰∗ y if and only if x ≿R

⊺ y. However, as illustrated by Example 2, when M
is richer, so too are the set of counterfactual predictions generated by the class
of M-invariant preferences. Moreover, Example 2 shows that the set of such
predictions is richer than either the transitive, or M-invariant closure.

It turns out, however, that the set of out-of-sample predictions generated
by the M-invariant rationalizations of a strongly acyclic data set ⟨≿R,≻R⟩ are
straightforwardly described by collapses.

Theorem 4. Suppose ⟨≿R,≻R⟩ is strongly acyclic. Then x ⪰∗ y for every
M-invariant rationalization ⪰∗ if and only if:〈

(y, x), (y, x)
〉
∈ F∗,

and x ≻∗ y for every such rationalization if and only if:〈
(y, x),∅

〉
∈ F∗.

If
〈
(y, x), (y, x)

〉
∈ F∗, then there is a constraint on the extension problem

requiring no rationalization to rank y ≻∗ x. In this case, every rationalization
must rank x ⪰∗ y.25 As such, this condition is clearly necessary. However, the
primary content of Theorem 4 is that look only at such ‘singleton’ restriction
sets is also sufficient: the set of comparisons forced by restrictions of this form
are, in fact, the only comparisons agreed upon by every rationalization. This
provides a complete solution to (Q.2), for any choice of invariance axioms, data,
or domain.

7 Conclusion

This paper studies the problem of characterizing the empirical content of struc-
tured families of preferences, satisfying axioms beyond rationality alone. The
basic observation underlying our results is that many of the most economically
important and widely used decision-theoretic axioms share a common mathe-
matical structure: they are what we have termed ‘invariance axioms.’ Our main
results provide characterizations of the empirical content and out-of-sample pre-
dictions generated by arbitrary sets of such axioms. The advantage of this ab-
straction is that it provides a unified theory and framework for studying a wide
range of seemingly disparate economic models that had previously only been
studied in isolation. By clarifying the common underlying structure at play,
we hope that further work may build on the results here to develop further
‘universal’ revealed preference characterizations.

25Analogously,
〈
(y, x),∅

〉
∈ F∗ encodes the restriction that no rationalization can rank

y ⪰∗ x and hence every rationalization must rank x ≻∗ y.
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Appendix

A Proof of Theorem 1

Recall that a binary relation relation ⪰ ⊆ X ×X is M-invariant if:

x ⪰ y =⇒ ω(x) ⪰ ω(y)

and
x ≻ y =⇒ ω(x) ≻ ω(y),

for all x, y ∈ X and ω ∈ M. We say that ⪰ is strongly M-invariant if:

x ⪰ y ⇐⇒ ω(x) ⪰ ω(y)

and
x ≻ y ⇐⇒ ω(x) ≻ ω(y).

Lemma 1. Suppose that an acyclic relation ≿R is M-invariant. Then so is its
transitive closure, ≿R

⊺ .

Proof. First, let x, y ∈ X such that x ≿R
⊺ y. Then there exists x1, . . . , xK ∈ X,

K ≥ 2, such that x = x1 ≿R · · · ≿R xK = y. By M-invariance of ≿R, for
every ω ∈ M, we also have that ω(x) = ω(x1) ≿R · · · ≿R ω(xk) = ω(y), hence
ω(x) ≿R

⊺ ω(y) as desired.

Now, suppose that x ≿R
⊺ y but it is not the case that y ≿R

⊺ x. We want to

show that it is not the case that ω(y) ≿R
⊺ ω(x) for any ω ∈ M. As x ≿R

⊺ y,

there exist x1, . . . , xK ∈ X, K ≥ 2 such that x = x1 ≿R · · · ≿R xK = y; since
additionally it is not the case that y ≿R

⊺ x, for some 1 ≤ i ≤ K − 1, we have
xi ≻ xi+1. Consequently, for any ω ∈ M, by M-invariance, we must also have
ω(x) = ω(x1) ≿R · · · ≿R ω(xK) = ω(y), where ω(xi) ≻ ω(xi+1). By acyclicity
of ≿R, it is then not the case that ω(y) ≿R

⊺ ω(x), and hence ω(x) ≻R
⊺ ω(y) as

desired. As ω ∈ M was arbitrary, the result follows.

Lemma 2. Suppose M is a commutative family. Then every M-invariant
preorder has a strongly M-invariant preorder extension.

Proof. Let ≿R be a weakly M-invariant preorder. Define ⪰ via x ⪰ y if and
only if there exists ω ∈ M such that ω(x) ≿R ω(y).26

Since the identity function id ∈ M, it follows immediately that ≿R ⊆ ⪰.
Suppose, now, that x ≻R y and, for purposes of contradiction that addition-
ally y ⪰ x. Then there exist ω ∈ M for which ω(y) ≿R ω(x). Since ≿R

is M-invariant, this implies that both: ω(y) ≿R ω(x) and ω(x) ≻R ω(y), a
contradiction. Thus ≻R ⊆ ≻ as well, and hence ⪰ defines an extension of ≿R.

26Recall that as M is closed under composition, this is equivalent to the existence of
ω1, . . . , ωK ∈ M such that (ω1 ◦ · · · ◦ ωK)(x) ≿R (ω1 ◦ · · · ◦ ωK)(y).
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We now claim that ⪰ is transitive. Suppose that x ⪰ y ⪰ z. As x ⪰ y, there
exist ω ∈ M for which ω(x) ≿R ω(y). Similarly, as y ⪰ z, there exist ω′ ∈ M
for which ω′(y) ⪰ ω′(z). By the M-invariance of ≿R and by commutativity of
M, we obtain (ω ◦ ω′)(x) ≿R (ω ◦ ω′)(y) and (ω ◦ ω′)(y) ≿R (ω ◦ ω′)(z), and
hence (ω ◦ ω′)(x) ≿R (ω ◦ ω′)(z) by transitivity of ≿R. But this means x ⪰ z,
thus we conclude ⪰ is transitive.

We now show that ⪰ is M-invariant. Suppose that x ⪰ y and let ω̄ ∈ M.
There exists ω ∈ M for which ω(x) ≿R ω(y). By commutativity of M and the
M-invariance of ≿R, we have (ω ◦ ω̄)(x) ⪰ (ω ◦ ω̄)(y), and hence ω(x) ⪰ ω(y).
Suppose now, additionally, that x ≻ y and, for sake of contradiction that for
some ω′ ∈ M, ω′(y) ⪰ ω′(x). Then there exists ω′′ ∈ M for which (ω′′ ◦
ω′)(y) ≿R (ω′′ ◦ ω′)(x), which by definition implies that y ⪰ x, a contradiction.
Hence ⪰ is M-invariant.

Finally, we show that ⪰ is strongly M-invariant. Suppose that ω(x) ⪰ ω(y).
Then there exist ω′ ∈ M for which (ω′ ◦ ω)(x) ≿R (ω′ ◦ ω)(y), which implies
x ⪰ y. Suppose further ω(y) ⪰ ω(x) is false but, for sake of contradiction, that
y ⪰ x. Then there exist ω′′ ∈ M such that ω′′(y) ⪰ ω′′(x). By M-invariance
of ≿R, (ω ◦ ω′′)(y) ≿R (ω ◦ ω′′)(x). But then by the commutativity of M, we
conclude ω(y) ⪰ ω(x), a contradiction. The result follows.

Lemma 3. Let M be a commutative family. Let ⪰ be an M-invariant preorder,
and w, z ∈ X be ⪰-unrelated (and hence distinct) elements of X. Then there is
an acyclic M-invariant extension ⪰′ of ⪰ that renders w and z comparable.

Proof. For each ω ∈ M, let eω : M → Z denote the function satisfying ω 7→ 1
and ω′ 7→ 0 for all ω ̸= ω′. By commutativity, any finite string of compositions
of functions in M may be associated with a finitely-supported, non-negative
valued, function M → Z via:

ωn1
1 ◦ ωn2

2 ◦ · · · ◦ ωnK

K 7→ n1eω1
+ · · ·+ nKeωK

,

where ωn denotes the n-fold composition of ω with itself. Let M∗ denote the
set of all such functions; conversely, every element of M∗ clearly corresponds
to some (composition of elements in M and hence) element of M. Note that if
f ,g ∈ M∗ represent finite strings of transformations in M, then f+g represents
their composition. For the remainder of this proof, we will freely associate ele-
ments of M with some fixed choice of representative in M∗; the non-uniqueness
of this selection will be irrelevant.

Suppose now, for sake of obtaining a contradiction, that no acyclic, M-
invariant extension of ⪰ exists that compares w and z. Thus every M-invariant
binary relation that extends ⪰ and renders w and z comparable, contains some
cycle; in particular, the minimal such extensions obtained either (i) by adding
w ≻′ z and f(w) ≻′ f(z) for all f associated with some finite composition of
elements of M, (ii) by adding z ≻′ w and all f(z) ≻′ f(w), or (iii) by adding
z ∼′ w and all f(z) ∼′ f(w), must contain some cycle. Consider first ⪰′ = ⪰
∪ ⪰∗, where ⪰∗ contains all relations of the form w ≻∗ z and f(w) ≻∗ f(z) for
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all finite compositions of elements of M, f . Since ⪰ is a preorder, it follows
there exists a cycle in ⪰′ composed of relations of two forms:

a1(z) ⪰ a2(w) a2(w) ≻∗
⊺ a2(z)

...
...

aI−1(z) ⪰ aI(w) aI(w) ≻∗
⊺ aI(z)

aI(z) ⪰ a1(w) a1(w) ≻∗
⊺ a1(z)

(5)

for some x ∈ X, where the left column consists of relations in ⪰ and the right
sequences solely of relations in ⪰′ \ ⪰. Note that I ≥ 2, and without loss of
generality, each ai is distinct.27

Analogously, if ⪰′ = ⪰ ∪ ⪰∗, where ⪰∗ contains all relations of the form
z ≻∗ w and f(z) ≻∗ f(w) for finite compositions f , then there exists a cycle of
the form:

b1(w) ⪰ b2(z) b2(z) ≻∗
⊺ b2(w)

...
...

bJ−1(w) ⪰ bJ(z) bJ(z) ≻∗
⊺ bJ(w)

bJ(w) ⪰ b1(z) b1(z) ≻∗
⊺ b1(w)

(6)

for some x′ ∈ X, where again the left column consists of relations in ⪰, the
right solely of sequences of relations in ⪰′ \ ⪰, J ≥ 2, and each bj unique.

Finally, suppose ⪰′ = ⪰ ∪ ⪰∗, where ⪰∗ contains all relations of the form
z ∼∗ w and f(z) ∼∗ f(w) for finite compositions f . By hypothesis, there is a
cycle of the form:

c1(y1) ⪰ c2(x2) c2(x2) ∼∗
⊺ c2(y2)

...
...

cK−1(yK−1) ⪰ cK(xK) cK(aK) ∼∗
⊺ cK(yK)

cK(yK) ⪰ c1(x1) c1(x1) ∼∗
⊺ c1(y1)

(7)

where at least one relation in the left-hand column is strict, K ≥ 2, each ck is
unique, and for all k = 1, . . . ,K, {xk, yk} = {w, z}.

Now, define:
pi = ai+1 − ai

qj = bj+1 − bj

rk = ck+1 − ck,

27If I = 1, then we have a1(z) ⪰ x and x ⪰ a1(w), hence a1(z) ⪰ a1(w). Since ⪰ is
M-invariant, this would imply w and v are ⪰-related, which is false.
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where we interpret indices I + 1, J + 1,K + 1 ≡ 1. Note that each pi,qj , and
rk is not equal to the zero function 0 and, by construction:

I∑
i=1

pi =

J∑
j=1

qj =

K∑
k=1

rk = 0.

Consider the sets:
Ãwz =

{
rk | yk = w, xk+1 = z

}
Ãzw =

{
rk | yk = z, xk+1 = w

}
Ãww =

{
rk | yk = w, xk+1 = w

}
Ãzz =

{
rk | yk = z, xk+1 = z

}
.

Clearly these sets cover {r1, . . . , rK}. However, they may not define a partition.
Thus let:

Awz = Ãwz

Azw = Ãzw \ Ãwz

Aww = Ãww \ Ãzw \ Ãwz

Azz = Ãzz \ Ãww \ Ãzw \ Ãwz,

if these sets are non-empty, and otherwise define them as {0}. By hypoth-
esis, at least one of the A sets must contain non-zero elements. Note that
each element of {r1, . . . , rK} is contained in exactly one set in the collec-

tion {Awz, Azw, Aww, Azz}. Let {smwz}
|Awz|
m=1 (resp. {smzw}

|Azw|
m=1 , {smww}

|Aww|
m=1 , and

{smzz}
|Azz|
m=1 ) denote enumerations of Awz (resp. Azw, Aww, and Azz).

We now establish a contradiction, by showing that ⪰ contains a cycle, con-
trary to our hypothesis that it is a preorder. Let h̄ denote a sufficiently large
vector in M∗.28 We will consider two cases in turn.

Case 1: |Awz|+ |Azw| > 0.

To build our cycle, we first define two chains in ⪰ which will prove important
in our construction.29 By the top-left relation in (5), we have:

a1(z) ⪰ a2(w).

By M-invariance, this implies:

(h̄+ a1)(z) ⪰ (h̄+ a2)(w),

and hence, so long as h̄ is large enough, i.e. h̄+ p1 ≥ 0, we have:

(h̄)(z) ⪰ (h̄+ p1)(w),

28Sufficiently in the sense only that each vector in the following sequence remain non-
negative valued.

29The first chain indexes by |Awz | and the second indexes by |Azw|; if either of these are
zero, these chains are trivial.

28



by (full) M-invariance. By repeating this logic, and also applying it to relations
from (6) and (7), we can obtain lengthy chains of ⪰-relations. Let us refer to
chain one as the sequence:

h̄(z) ⪰ (h̄+ p1)(w)

⪰ (h̄+ p1 + s1wz)(z)

...

⪰
(
h̄+ |Awz|

I∑
i=1

pi + I

|Awz|∑
m=1

smwz

)
(z)

...

⪰
(
h̄+ J |Awz|

I∑
i=1

pi + IJ

|Awz|∑
m=1

smwz

)
(z).

which follows simply by repeating application of the above observation.30 Sim-
ilarly, we refer to chain two as the sequence of relations:

h̄(z) ⪰ (h̄+ s1zw)(w)

⪰ (h̄+ s1zw + q1)(z)

...

⪰
(
h̄+ J

|Azw|∑
m=1

smwz + |Azw|
J∑

j=1

qj

)
(z)

...

⪰
(
h̄+ IJ

|Azw|∑
m=1

smwz + I |Azw|
J∑

j=1

qj

)
(z).

30The first part of this chain, up to:(
h̄+ |Awz |

I∑
i=1

pi + I

|Awz |∑
m=1

smwz

)
(z)

is constructed as follows: for every l = 1, . . . , I|Awz |, every term of the form (h̄+. . .+pl)(w) is
followed by a term of the form (h̄+. . .+pl+slwz)(z), and for every l = 0, . . . , I|Awz |−1, every

term of the form (h̄+ . . .+ slwz)(z) is followed by a term of the form (h̄+ . . .+pl + sl+1
wz )(w),

where indices on p are to be understood modulo I and on swz modulo |Awz | as above. The
second part of this chain, up through:(

h̄+ J |Awz |
I∑

i=1

pi + IJ

|Awz |∑
m=1

smwz

)
(z),

follows by iterating the first I|Awz | steps of this construction an additional |J | − 1 times.
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Appending these chains together then yields a chain:

h̄(z) ⪰ · · · ⪰
(
h̄+I |Azw|

J∑
j=1

qj+J |Awz|
I∑

i=1

pi+IJ

|Awz|∑
m=1

smwz+IJ

|Azw|∑
m=1

smwz

)
(z).

Consider now the following modification to this chain: immediately after
the first instance of an f(z) ⪰ g(w) relation, apply IJ applications of each
transformation in Aww. Similarly, after the first f(w) ⪰ g(z) relation, insert IJ
repetitions of each transformation in Azz. The result is a chain:

h̄(z) ⪰ · · · ⪰
(
h̄+ I |Azw|

J∑
j=1

qj + J |Awz|
I∑

i=1

pi + IJ

K∑
k=1

rk
)
(z).

However, since
∑

i p
i =

∑
j q

j =
∑

k r
k = 0, the first and last terms in

this chain coincide. Moreover, since every relation in the left-hand column of
(7) appears in this cycle, the sequence contains at least one strict relation,
contradicting the hypothesis that ≻ is a preorder.

Case 2: |Awz|+ |Azw| = 0.

Here, we follow a similar construction to the preceding case, except here we
first consider a single chain of the form:

h̄(z) ⪰ (h̄+ p1)(w)

⪰ (h̄+ p1 + q1)(z)

...

⪰
(
h̄+ J

I∑
i=1

pi + I

J∑
j=1

qj

)
(z).

Consider now the following modification to this chain: immediately after
the first instance of an f(z) ⪰ g(w) relation, insert one application of each
transformation in Aww. Similarly, after the first f(w) ⪰ g(z) relation, insert an
application of each transformation in Azz. The result is a chain:

h̄(z) ⪰ · · · ⪰
(
h̄+ I

J∑
j=1

qj + J

I∑
i=1

pi +

K∑
k=1

rk
)
(z).

But by analogous logic to the former case, this also defines a cycle, contra-
dicting the assumption that ⪰ is a preorder. Since these cases are exhaustive,
we conclude such an extension must exist, which completes the proof.

We now are in a position to prove Theorem 1.
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Proof. Suppose ≿R
M is acyclic. By Lemma 1, the transitive closure of ≿R

M is an
M-invariant pre-order, and hence by Lemma 2 admits a strongly M-invariant
preorder extension.

The remainder of the proof follows from a standard transfinite induction
argument. Let PM denote the set of strongly M-invariant preorders on X, par-
tially ordered by extension. Given ⪰1,⪰2 ∈ PM, we write ⪰1 ▷ ⪰2 whenever
⪰1 extends ⪰2. Let {⪰λ}λ∈Λ be an arbitrary ▷-chain of M-invariant pre-
orders. It follows from standard arguments (see, e.g., Richter 1966; Chambers
and Echenique 2016) that:

⪰̄ =
⋃
λ∈Λ

⪰λ

is a preorder extension of every ⪰λ. Similarly, it follows that ⪰̄ is strongly
M-invariant: if (x, y) ∈ ⪰̄, then there exists some λ ∈ Λ such that x ⪰λ y,
and since ⪰λ is strongly M-invariant, so must be ⪰̄ since it extends ⪰λ. Hence
⪰̄ belongs to PM, and by Zorn’s Lemma, there exists a maximal strongly M-
invariant preorder ⪰∗ which extends ≿R

M. Suppose, for purposes of obtaining
a contradiction, that ⪰∗ is not complete. Then there exist w, z ∈ X that
are ⪰∗-unrelated. By Lemma 3 there exists a strongly M-invariant preorder
extension of ⪰∗ that renders w and z comparable, however, this contradicts
the ▷-maximality of ⪰∗. Thus ⪰∗ is complete and hence is an M-invariant
rationalizing preference for ≿R

M, and hence ≿R.

B Relating Theorem 1 and GARP Variations:
The Case of Price-Consumption Data

In this section, we consider the special case in which our relations ⟨≿R,≻R⟩ are
generated by some price-consumption data set {(p1, x1), . . . , (pK , xK)}. Here,
we assume ⟨≿R,≻R⟩ are the revealed preference relations associated with this
data set, via:

x ≿R y ⇐⇒ x = xk for some k, and pk · x ≥ pk · y

(respectively ≻R and >). We show that for various common choices of M,
the acyclicity of ⟨≿R

M,≻R
M⟩ straightforwardly reduces to the standard, model-

specific revealed preference axioms.

B.0.1 Quasilinearity

Suppose that X = Y × R+, and M consists of all transformations of the form
(y, t) 7→ (y, t+ α) for α ≥ 0. Let ⟨≿R,≻R⟩ be an arbitrary data set. Then the
M-closure ⟨≿R

M,≻R
M⟩ is defined by:

(y, t+ α) ≿R
M (y′, t′ + α) ⇐⇒ (y, t) ≿R (y′, t′)

for some α ≥ 0, and analogously for ≻R
M.
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Suppose now that Y = RL−1
+ , and ⟨≿R,≻R⟩ is the revealed preference rela-

tion arising from some price-consumption data set; without loss of generality,
we normalize each pk = (p̃k, 1). Then a ⟨≿R

M,≻R
M⟩ cycle is equivalent to the

existence of (yk0
, t0), . . . , (ykN

, tN ) ∈ X, and α0, . . . , αN ≥ 0 such that:

pk0
· (yk0

, tk0
) ≥ pk0

· (yk1
, t1 + α0) = pk0

· (yk1
, tk1

+ α0 − α1)

pk1
· (yk1

, tk1
) ≥ pk1

· (yk2
, t2 + α1) = pk1

· (yk2
, tk2

+ α1 − α2)

...

pkN
· (ykN

, tkN
) > pkN

· (yk0
, t0 + αN ) = pkN

· (yk0
, tk0

+ αN − α0)

(8)

where tki
= ti + αi for all i = 1, . . . N .31 Summing over (8):

N∑
i=0

p̃ki · (yki+1 − yki) < 0,

which precisely corresponds precisely to a negative cycle à la Brown and Cal-
samiglia (2007).32

B.0.2 Homotheticity

Let X be a cone in a real vector space, and let M consist of all transformations
of the form x 7→ αx, for α > 0. The particular case of X = Rn

+ is treated
in Chambers and Echenique (2016), Theorem 4.2, but we reproduce the ideas
here.

Here, the M-closure of the data set ⟨≿R,≻R⟩ is given by:

x ≿R
M y ⇐⇒ αx ≿R αy

for some α > 0, with a similar definition for ≻R
M. In Chambers and Echenique

(2016), ⟨≿R
M,≻R

M⟩ is referred to as ⟨⪰H ,≻H⟩. The M-closure is acyclic if and
only if there do not exist x0, . . . , xN ∈ X and α0, . . . , αN > 0 such that:

α0x0 ≿R α0x1

α1x1 ≿R α1x2

...

αNxN ≻R αNx0.

Suppose again that ⟨≿R,≻R⟩ is the revealed preference relation arising from
some set of price-consumption observations; without loss of generality, we nor-
malize each price so pk · xk = 1. Then (9) is equivalent to the existence of

31In other words, x ≿R
M y if and only if there is some fixed translation along the numeraire

axis that brings x equal to some chosen xk, and which leaves y within the budget defined by
pk and xk.

32Here, the i indices are understood to satisfy N + 1 ≡ 0.
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xk0 , . . . , xK ∈ X and α0, . . . , αK > 0 such that:

pk0 · xk0 ≥ pk0 · (α0x1) = pk0 ·
(
α0xk1

α1

)
pk1

· xk1
≥ pk0

· (α1x2) = pk0
·
(
α1xk2

α2

)
...

pkN
· xkN

> pkN
· (αNx0) = pkN

·
(
αNxk0

α0

)
(9)

where αixi = xki
for all i = 1, . . . , N . Taking products of (9) leads to the

cancellations of all αi/αi+1 terms, resulting in:

N∏
i=0

pki
xki+1

< 1,

which is precisely a violation of the homothetic axiom of revealed preference of
Varian (1983). As mentioned previously, in the case of general ⟨≿R,≻R⟩, not
necessarily arising from price-consumption observations, Demuynck (2009) ob-
tains a similar characterization, in the special case of monotone and homothetic
preferences, via a different approach.

B.0.3 Translation-Invariance

Let S be some finite set of states of the world, and let X = RS denote the space
of portfolios of Arrow securities. Let M denote the collection of transformations
of the form x 7→ x + α⃗, where α⃗ := (α, . . . , α), for each α ∈ R. We refer to
an M-invariant preference as translation invariant. By Theorem 1, the data
⟨≿R,≻R⟩ are rationalizable by a translation-invariant preference if and only if
there does not exist x0, . . . , xN ∈ X and α0, . . . , αN ∈ R such that:

pk0
· xk0

≥ pk0
·
(
x1 + α⃗0

)
= pk0

·
(
xk1

+ α⃗0 − α⃗1

)
pk1

· xk1
≥ pk1

·
(
x2 + α⃗1

)
= pk1

·
(
xk2

+ α⃗1 − α⃗2

)
...

pkN
· xkN

≥ pkN
·
(
x0 + α⃗N

)
= pkN

·
(
xk0

+ α⃗N − α⃗0

)
.

(10)

Summing over (10) we obtain:

N∑
i=0

pki
· (xki+1

− xki
)−

N∑
i=0

(αi − αi+1)∥pki
∥1 < 0,

or, normalizing each pki by ∥pki∥1 without loss of generality:

N∑
i=0

pki

∥pki∥1
· (xki+1 − xki) < 0,
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precisely the same condition obtained in Chambers et al. (2016).33

C Proof of Theorem 2

C.1 Preliminaries from Propositional Logic

For all (x, y) ∈ X ×X, define two boolean variables:

[x ⪰ y] and [x ≻ y].

Let V denote the set of all such variables. Amodel is a mapping µ : V → {⊤,⊥}
assigning a truth value to every variable in V.34 We may extend any model from
boolean variables to well-formed logical formulae in the obvious manner. For
a proof of this fact, and an introduction to propositional logic, the interested
reader is referred to Schöning (2008).

Every formula in propositional logic is equivalent to one in conjunctive nor-
mal form (CNF).35 A literal is an atomic formula, of the form A or ¬A, for
some A ∈ V. A finite formula F in conjunctive normal form can be written as:

F = (A1,1 ∨ · · · ∨A1,n1
) ∧ · · · ∧ (AK,1 ∨ · · · ∨AK,nK

),

where each Ai,j is a literal. We view the formula F as being formed by the
individual clauses:

Ci = Ai,1 ∨ · · · ∨Ai,ni
.

A formula such as F can be compactly expressed in set notation:{
{A1,1, . . . , A1,n1}︸ ︷︷ ︸

C1

, . . . , {AK,1, . . . , AK,nK
}︸ ︷︷ ︸

CK

}
,

where each Ci = {Ai,1, . . . , Ai,ni
} is a clause. In other words, within a clause, a

comma denotes an OR operation (i.e. ∨), and a comma between clauses denotes
an AND (i.e. ∧). The formula consisting only of the empty clause {∅} is a valid
formula; by definition it is unsatisfiable.

Let C1, C2, and R be clauses. We say that R is a resolvent of C1 and C2

if there exists some literal L such that L ∈ C1 and ¬L ∈ C2, and

R =
(
C1 \ {L}) ∪ (C2 \ {¬L}).

The following property resolution is standard (see, e.g., Schöning 2008 p.32).

Lemma 4. Let Θ be a set of clauses, and let R be the resolvent of two clauses
C1 and C2 in Θ. Then Θ and Θ ∪ {R} are logically equivalent.

33Economically, this normalization may be regarded as treating bonds as a numeraire com-
modity.

34In this appendix, we will exclusively use the word ‘model’ in its logical interpretation,
rather than its economic meaning in the main text.

35See Schöning 2008.
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When speaking of resolvents, we explicitly allow for R to be the empty set.
Suppose Θ is a set of clauses. A derivation of ∅ via resolution is a finite
sequence of clauses {C1, . . . , CN} such that:

(i) CN = ∅; and

(ii) For all i = 1, . . . , N , Ci is either a clause in Θ, or a resolvent some Cj and
Ck (the parents of Ci), where j, k < i.

More generally, if we remove condition (i) we speak of a partial derivation
(of CN ). A set of clauses Θ is said to be unsatisfiable if and only if there is
no model which evaluates every formula in Θ to ⊤. Remarkably, by forming
a finite number of resolvents, one is always capable of detecting whether any
finite set of formulas is unsatisfiable.

Theorem 5 (Robinson 1965). Let Θ be a finite set of clauses. Then Θ is
unsatisfiable if and only if there exists a derivation of ∅ via resolution.

The Robinson (1965) paper actually proves stronger analogous result, in the
more general setting of first-order logic. For a proof of the above result in
propositional logic, the interested reader is referred to Schöning (2008), Chapter
1, Section 5. Many refinements of Theorem 5 exist, intended to further reduce
the search space for proofs in the context of machine learning. We will have
use of the following modification: say a derivation {C1, . . . , CN} of ∅ is via
negative resolution if:

(i) CN = ∅; and

(ii’) For all i = 1, . . . , N , Ci is either a clause in Θ, or a resolvent of some Cj

and Ck, where j, k < i and either Cj or Ck contains no positive literals.

The following theorem is proven on p.102 in Schöning (2008).

Theorem 6. Let Θ be a finite set of formulas. Then Θ is unsatisfiable if and
only if there exists a derivation of ∅ via negative resolution.

Theorem 6 provides a ‘representation theorem’ for proofs of inconsistency: while
there may be (many) proofs that a given set of clauses is unsatisfiable, Theorem 6
guarantees that at least one can be carried out wholly via resolution where one
parent at every step contains no positive literals. Crucially, every order pair in
⟨W,S⟩ ∈ F∗ uniquely defines a clause containing no positive literals:

⟨W,S⟩ 7→
[ ∨
(x,y)∈W\S

¬[x ⪰ y]

]
∨
[ ∨
(x,y)∈S

¬[x ≻ y]

]
. (11)

We term this the clausal representation of the order pair ⟨W,S⟩. In partic-
ular, the clausal representation of ⟨∅,∅⟩ is the empty clause.
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C.2 M-invariant Rationalization

Let Φ denote the collection of all logical formulas of the following form:

(T.1) Completeness: For all x, y ∈ X:

[x ⪰ y] ∨ [y ⪰ x].

This is in conjunctive normal form (CNF).

(T.2) Coherency: For all x, y ∈ X:

[x ⪰ y] ⇐⇒ ¬[y ≻ x].

In CNF, this may be regarded as two separate clauses,

¬[x ⪰ y] ∨ ¬[y ≻ x] (T.2.a)

and
[x ⪰ y] ∨ [y ≻ x]. (T.2.b)

(T.3) Transitivity: For all x, y, z ∈ X:

[x ⪰ y] ∧ [y ⪰ z] =⇒ [x ⪰ z],

or, in CNF:
¬[x ⪰ y] ∨ ¬[y ⪰ z] ∨ [x ⪰ z].

(T.4) Extension: For all (x, y) ∈ ≿R,

[x ⪰ y].

Moreover, if (x, y) ∈ ≻R then:

[x ≻ y].

(T.5) Invariance: For all x, y ∈ X and ω ∈ M such that x, y belong to the
domain of ω:

[x ⪰ y] ⇐⇒ [ω(x) ⪰ ω(y)],

or
¬[x ⪰ y] ∨ [ω(x) ⪰ ω(y)] (T.5.a)

and
[x ⪰ y] ∨ ¬[ω(x) ⪰ ω(y)]. (T.5.b)

By construction, the set of models which evaluate to ⊤ for every formula in Φ are
in 1-1 correspondence with the M-invariant weak order extensions of ⟨≿R,≻R⟩.
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C.3 Proofs

We proceed in the proof of Theorem 2 via several lemmas.

Lemma 5. Suppose ⟨∅,∅⟩ ∈ F∗. Then there does not exist any M-invariant
preference relation extending ⟨≿R,≻R⟩.

Proof. By minor abuse of notation, we identify every order pair in F∗ with its
clausal representation under (11). Let Θ denote the collection of all clauses of
the form (T.1) - (T.5), as well as all clauses in F0; recall, F0 consists of the
(clausal representations of) forbidden subrelations generated by broken cycles
in the data.

Suppose ⪰ is an M-invariant weak order extension of ⟨≿R,≻R⟩. By con-
struction, the rule of assignment (i) [x ⪰ y] = ⊤ if and only if x ⪰ y and (ii)
[x ≻ y] if and only if x ≻ y, defines a valid model for Θ, i.e. under these assign-
ments, every clause in Θ evaluates to ⊤.36 Thus Φ is satisfiable if and only if Θ
is.

Let C,C ′ ∈ F0 denote clausal representations of two forbidden subrelations,
derived from broken cycles (either strict or weak) in the data, and suppose
D ∈ F1 is the (clausal representation of the) collapse of C and C ′. Regarding
these as sets of negative literals, there exists (negative) literals L ∈ C and
L′ ∈ C ′ such that:

D =
(
C \ {L}

)
∪

(
C ′ \ {L′}

)
and either:

L = ¬[ω(y) ⪰ ω(x)] and L′ = ¬[ω′(x) ⪰ ω′(y)]

or
L = ¬[ω(y) ⪰ ω(x)] and L′ = ¬[ω′(x) ≻ ω′(y)]

for some x, y ∈ X, ω, ω′ ∈ M. Suppose L and L′ are of the former type. Then
¬[ω(y) ⪰ ω(x)] ∈ C, hence we may form C1 by resolving C with the (T.5.a)
clause ¬[y ⪰ x] ∨ [ω(y) ⪰ ω(x)]. Then form C2 by resolving C1 with the (T.1)
clause [x ⪰ y] ∨ [y ⪰ x], and finally form C3 by resolving C2 with the (T.5.a)
clause ¬[x ⪰ y] ∨ [ω′(x) ⪰ ω′(y)]. Thus:

C3 =
(
C \ {L}

)
∪

{
[ω′(x) ⪰ ω′(y)]

}
.

Then C3 and C ′ can be resolved to form D. By Lemma 4, Θ and Θ ∪
{
D
}
are

logically equivalent.

Proceeding, suppose now instead that L and L′ are of the latter type. Again
form C1 via resolving C with the (T.5.a) clause ¬[y ⪰ x] ∨ [ω(y) ⪰ ω(x)], and

36The clauses of the form (T.1)-(T.5) are clearly necessary as they define the basic properties
of an invariant weak order extension. Clauses in F0 must also hold lest ⪰ contain a cycle.
Every clause in F0 can be logically deduced from (T.1) - (T.5), however we do not need this
fact in light of standard order-theoretic arguments.
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then C2 by resolving C1 and the (T.5.b) clause [y ⪰ x]∨¬[ω(y) ⪰ ω(x)]. Finally,
form C3 by resolving C2 with the type (T.2.b) [ω(y) ⪰ ω(x)] ∨ [ω(x) ≻ ω(y)].
Then D is the resolvent of C3 and C ′, and hence by an analogous argument, Θ
and Θ ∪

{
D
}
are again logically equivalent.

Since C,C ′ and D were arbitrary, we have shown that Θ and Θ ∪ F1 are
logically equivalent. However, nothing in the preceding argument relied on C,C ′

belonging to F0, rather than any other Fn. Hence by an identical argument,
Θ∪Fn and Θ∪Fn+1 are logically equivalent, implying so too are Θ and Θ∪F∗.
Since any model evaluates the empty clause∅ to⊥, the fact ⟨∅,∅⟩ ∈ F∗, implies
F∗ is unsatisfiable by soundness of resolution, and hence so too is Θ. Thus no
M-invariant weak order extension of ⟨≿R,≻R⟩ can exist.

Lemma 6. Let C be a disjunction of negative literals such that C ∈ Φ or C
is the resolvent of two elements of Φ, one of which contains no positive literals.
Then C ∈ F1.

Proof. Suppose first that C ∈ Φ. Since C is a disjunction of negative literals, it
must be of the form (T.2.a), i.e.:

C = ¬[x ⪰ y] ∨ ¬[y ≻ x].

Then C corresponds to (the clausal representation of) the forbidden subrelation
associated with:

x ≿R x

y ≿R y,

and hence C ∈ F0 ⊆ F1. Suppose instead then that C is the resolvent of
C ′, D ∈ Φ, where D is a disjunction of negative literals and hence D = ¬[x ⪰
y]∨¬[y ≻ x]. Since C also contains no positive literals, it must be the case that
C ′ ∈ Φ contains exactly one positive literal. Therefore it must be of the form
(T.3), (T.4) or (T.5).

Case: C ′ = ¬[x ⪰ z] ∨ ¬[z ⪰ y] ∨ [x ⪰ y]. Then:

x ≿c x

z ≿c z

y ≿c y

defines a broken cycle for which which C is a forbidden subrelation, and hence
again C ∈ F0 ⊆ F1.

Case: C ′ = [x ⪰ y] or C ′ = [y ≻ x]. If the former is true, then C = ¬[y ≻ x].
But since C ′ must be a type (T.4) clause, this implies we must have x ≿c y in
the data, and hence:

x ≿c y

is a broken cycle with forbidden subrelation C = ¬[y ≻ x] as desired. If instead
the latter is true, by an analogous argument x ≻c y and:

x ≻c y
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is a broken cycle which admits forbidden subrelation C = ¬[y ⪰ x]. In either
case, we again find C ∈ F0 ⊆ F1.

Case: C ′ = [x ⪰ y] ∨ ¬[ω(x) ⪰ ω(y)]. Then:

C = ¬[y ≻ x] ∨ ¬[ω(x) ⪰ ω(y)].

However, the broken cycles:

x ≿R x ω(x) ≿R ω(x)

y ≿R y ω(y) ≿R ω(y)

yield forbidden subrelations:

¬[x ⪰ y] ∨ ¬[y ≻ x]

and
¬[ω(x) ⪰ ω(y)] ∨ ¬[ω(y) ≻ ω(x)].

Thus letting L = [x ⪰ y] and L′ = [ω(y) ≻ ω(x)], C is simply the collapse
of these two forbidden subrelations and hence belongs to F1. An analogous
argument obtains if instead C ′ = ¬[x′ ⪰ y′]∨ [x ⪰ y] where for some ω ∈ M we
have ω(x′) = x and ω(y′) = y.

Lemma 7. Suppose there does not exist an M-invariant weak order extension
of ⟨≿R,≻R⟩. Then ∅ ∈ F∗.

Proof. By construction, there is a one-to-one correspondence between M-
invariant preference relations extending ⟨≿R,≻R⟩ and models for Φ. Thus if
no such extension exists, Φ is unsatisfiable. By Propositional Compactness (see
Schöning 2008 Chapter I.4), there exists a finite unsatisfiable subset Φ∗ ⊆ Φ.

By Theorem 6, there exists a derivation of the empty set via negative reso-
lution, i.e. there exists a sequence of clauses C1, . . . , CN such that (i) CN = ∅,
(ii) for all 1 ≤ n ≤ N−1 the clause Cn either belongs to Φ∗ or is the resolvent of
two clauses Ci and Cj , with i, j < n, one of which contains no positive literals.

Let {D1, . . . , DK} denote those clauses in {C1, . . . , CN} which contain no
positive literals. For each Dk, if Dk is the resolvent of some Ci and Dj , define
Dj to be its negative parent (if Dk is not a resolvent, then we say Dk has no
negative parent). Furthermore, if Ci itself is the resolvent of some Ci′ and Dj′ ,
then we say Dj′ is the negative grandparent of Dk (similarly, if Ci ∈ Φ∗,
i.e. Ci is not a resolvent, then we say Dk has no negative grandparent). Define
NP(Dk), the negative predecessors of Dk, as the set consisting of Dk’s
negative parent and grandparent (if these exist).

Let D0 ⊆ {D1, . . . , DK} denote the subset of all Dk which belong to F0.37

For each n ≥ 1, define inductively:

Dn =
{
Dk : NP(Dk) ⊆ Dn−1

}
∪ Dn−1.

37Note D0 is non-empty as it contains at least D1 ∈ Φ∗.
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In other words, Dn consists of those positive-literal-free clauses Dk all of
whose negative predecessors (if these exist) belong to Dn−1 or lower. View-
ing {C1, . . . , CN} as a binary tree (Schöning 2008, Chapter I.5), by Lemma 6
the sets {Dn}∞n=0 cover {D1, . . . , DK}.38 We now wish to show that for all
n ≥ 1, Dn ⊆ Fn ⊆ C∗. By definition, D0 ⊆ F0. Thus suppose now that for
all n ≤ M , we have Dn ⊆ Fn, and consider n = M + 1. Let Dk ∈ DM+1. We
consider three cases.

Case 1: Dk has negative parent Dj and negative grandparent Dj′ , both of
which belong to DM and hence FM by the inductive hypothesis. Then Dk is the
resolvent of Dj and some Ci, and Ci the resolvent of Dj′ and some Ci′ . Since
Dk and Dj contain no positive literals, this means Ci must contain exactly one
positive literal. In turn, since Dj′ contains no positive literals, this implies Ci′

must contain exactly two positive literals. Since Φ∗ contains no clauses with
more than two positive literals, and since every resolvent in {C1, . . . , CN} has
a parent containing no positive literals, no resolvent in {C1, . . . , CN} can have
more than 1 positive literal. This means that Ci′ ∈ Φ∗ and hence is either of
the form Ci′ = [x ⪰ y] ∨ [y ⪰ x] or Ci′ = [x ⪰ y] ∨ [y ≻ x]. Suppose first that
Ci′ is of the former form. Then Ci consists of Dj′ but with one literal reversed
(i.e. the swapping the positions of the two alternatives featuring in it) and made
positive. Since this is Ci’s only positive literal, it must be the cancelling literal
when it is resolved with Dj , thus Dk is precisely the collapse of Dj′ and Dj ,
where the collapse comes from cancelling a pair of reversed weak relations. If,
instead, Ci′ is of the latter form, then once again Ci consists of Dj′ but now
the one literal is reversed, made positive, and made strict if it was weak, or
vice-versa. This is then cancelled by resolving with Dj and hence Dk consists
of the collapse of Dj′ and Dj where the collapse occurs between weak and strict
opposing negative literals. In either case, we find that Dk is the collapse of two
elements of FM and hence belongs to FM+1 as desired.

Case 2: Dk has a negative parent Dj but no negative grandparent, i.e.
Ci ∈ Φ∗. Since Dj and Dk contain no positive literals, it must be that Ci

contains exactly one positive literal. Thus Ci is either of the form:

(i) Ci = ¬[x ⪰ z] ∨ ¬[z ⪰ y] ∨ [x ⪰ y]

(ii) Ci = [x ⪰ y] or Ci = [y ≻ x]

(iii) Ci = ¬[x ⪰ y] ∨ [ω(x) ⪰ ω(y)] or Ci = [x ⪰ y] ∨ ¬[ω(x) ⪰ ω(y)] for some
ω ∈ M.

Suppose first Ci is of form (i). Then the cancelling literal must be [x ⪰ y].

38Viewing the resolution proof as a finite binary tree, Lemma 6 shows that (i) every leaf
that belongs to {D1, . . . , DK} belongs to D0, and (ii) every element of {D1, . . . , DK} that
two leaves for parents belongs to D1. The claim then follows by inducting on how many
generations of ancestors an element of {D1, . . . , DK} has in the tree.
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However, since:
x ≿c x

z ≿c z

y ≿c y

is a broken cycle, we know ¬[x ≿ z]∨ [z ≿ y]∨¬[y ≻ x] belongs to F0. Therefore
Dk can be formed from collapsing ¬[x ⪰ z] ∨ [z ⪰ y] ∨ ¬[y ≻ x] ∈ F0 with Dj .
Since Dj ∈ FM , this means Dk ∈ FM+1 as desired.

Suppose now that Ci is of type (ii). In the first case,

Dk = Dj \ {¬[x ⪰ y]}.

Note however that if [x ⪰ y] ∈ Φ∗, then x ≿c y, and thus:

x ≿c y

is a forcing collection for ¬[y ≻ x] and hence this clause belongs to F0. Thus
Dk may be obtained as the collapse of ¬[y ≻ x] and Dj and hence belongs to
DM+1. On the other hand, if Ci equals [y ≻ x] then y ≻c x and hence:

y ≻c x

is a strict broken cycle for ¬[x ⪰ y] and since:

Dk = Dj \ {¬[y ≻ x]},

Dk is just the collapse of Dj and ¬[x ⪰ y], and hence once again belongs to
DM+1.

Finally, suppose that Ci is of the former type (iii). Then the cancelling
literal must be [ω(x) ⪰ ω(y)]. Thus Dk is equal to Dj but with the literal
¬[ω(x) ⪰ ω(y)] ∈ Dj becoming ¬[x ⪰ y] ∈ Dk. Now,

x ≿c x

y ≿c y

is a broken cycle hence ¬[x ⪰ y] ∨ ¬[y ≻ x] belongs to F0. Then Dk arises as
the collapse of Dj ∈ DM and ¬[x ⪰ y] ∨ ¬[y ≻ x] ∈ F0 ⊆ DM along the pair
¬[y ≻ x] and ¬[ω(x) ⪰ ω(y)], and hence belongs to DM+1 as desired. If instead
Ci is of the latter type (iii), an analogous argument suffices.

Case 3: Dk has no negative parent. In this case, Dk cannot be a resolvent at
all, and hence belongs to Φ∗. The only clauses in Φ∗ which contain no positive
literals are of the form ¬[x ⪰ y]∨¬[y ≻ x]. If Dk is of this form, then it belongs
to F0 as

x ≿c x

y ≿c y

is a broken cycle for it, and hence it belongs to FM+1 as well.
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Now, as Dk cannot have a negative grandparent without a negative parent
(as our proof of inconsistency is by negative resolution), these cases are exhaus-
tive, and we find that for all 1 ≤ k ≤ K, the clause Dk ∈ F∗. Since DK = ∅,
this implies that ∅ ∈ F∗ as desired.

The proof of Theorem 2 follows from these lemmas.

D Proof of Theorem 4

Proof. Suppose first that
{
[y ≻ x]

}
∈ F∗. By an identical argument to that

in the proof of Theorem 2, Φ ∪
{
[y ≻ x]

}
is unsatisfiable. Thus no model

µ for Φ evaluates µ
(
[y ≻ x]

)
= ⊤. Since the set of models for Φ are in 1-1

correspondence with the set of M-invariant rationalizing preferences of ⟨≿R

,≻R⟩ (which is non-empty by hypothesis), we conclude every such rationalizing
preference must weakly rank x above y. An identical argument holds for the
case of

{
[y ⪰ x]

}
∈ F∗ case.

Conversely, suppose every M-invariant rationalizing preference ⪰∗ ranks
x ⪰∗ y. Then no model for Φ evaluates [y ≻ x] to ⊤, and hence Φ∪

{
[y ≻ x]

}
is

unsatisfiable. Define Φ′ as follows. First, remove from Φ any clause containing
the literal [y ≻ x]; then for every remaining clause that contains the negative
literal ¬[y ≻ x], delete this literal from it. By construction, any model µ′ for Φ′

uniquely extends to a model µ for Φ which evaluates µ
(
[y ≻ x]

)
= ⊤. Since no

such models µ exist, Φ′ must be unsatisfiable. By Propositional Compactness
(see Schöning (2008) Chapter I.4), there exists a finite subset of Φ′′ ⊆ Φ′ that is
unsatisfiable; by Theorem 6, there exists a derivation {C1, . . . , CN} of ∅ from Φ′′

via negative resolution. Let {D1, . . . , DK} ⊂ {C1, . . . , CN} denote the elements
of {C1, . . . , CN} belonging to Φ′′. Note that each Dk either (i) belongs to Φ as
well, or (ii) Dk ∪ {¬[y ≻ x]} belongs to Φ. Moreover, since Φ is satisfiable by
hypothesis, at least one Dk must be of the latter type. Define:

D̄k =

{
Ci if Dk ∈ Φ

Dk ∪ {¬[y ≻ x]} else.

Then resolving the {D̄1, . . . , D̄K} in the same order as in the derivation
{C1, . . . CN} generates a partial derivation {C̄1, . . . , C̄N} of ¬[y ≻ x] from
Φ via negative resolution, and hence by an identical argument to Lemma 7
[y ≻ x] ∈ F∗. An identical argument again works for the case in which every
extension ranks x ≻∗ y.
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