Revealed Invariant Preference

Pete Caradonna¹ Christopher Chambers²

¹Division of the Humanities and Social Sciences California Institute of Technology

> ²Department of Economics Georgetown University

Nearly all economic models built on foundation of economic actors maximizing individual well-being.

- Requires specifying how actors evaluate various stylized trade-offs and decisions.
- If these assumptions inconsistent with broad empirical regularities, models can yield unrealistic/outright incorrect predictions (e.g. Mehra & Prescott '85).

A Basic Question: How do we *systematically* obtain the testable implications of various models of preference and decision?

Classically, revealed preference has studied:

(i) Testable implications of rational behavior (generally)

- \rightarrow Model-free approach
- $\rightarrow\,$ Doesn't speak to specific structure(s) we're often interested in
- (ii) Testable implications of specific theories on model-by-model basis
 - \rightarrow Relies on special model-specific structure; no unified theory.
 - $\rightarrow\,$ Often relies on Afriat-type machinery; only valid for particular environments.

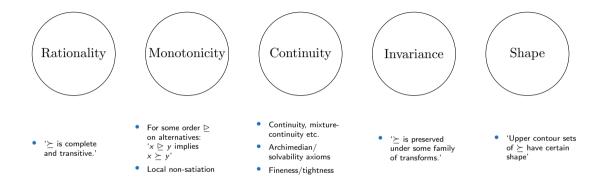
We are interested in studying the general mapping:

 $\label{eq:Model} \text{Model} \mapsto \text{Testable Implications.}$

A Less Basic Question: Can we obtain general results which characterize empirical content of *any* theory whose axioms belong to certain broad classes?

 $\rightarrow\,$ Need to exploit common mathematical structure behind various classes of axioms.

Categorizing Axioms



What Are Invariance Axioms?

Definition

A binary relation $R \subseteq X \times X$, with asymmetric component P, is **invariant** under a transformation $\omega : X \to X$ if, for all $x, y \in X$:

$$x R y \implies \omega(x) R \omega(y),$$

and

$$x P y \implies \omega(x) P \omega(y).$$

<u>Note</u>: If *R* is invariant under ω, ω' , then it is also invariant under $\omega \circ \omega'$ and $\omega' \circ \omega$.

- \rightarrow Collection of transformations leaving *R* invariant always forms *semigroup* under \circ .
- \rightarrow If R is invariant under every transformation in some semigroup of transformations \mathcal{M} , we say it is \mathcal{M} -invariant.

Examples I

Quasilinearity: $X = \mathbb{R}_+ \times Z$.

• For all $\alpha \geq 0$:

$$(t,z) \succsim (t',z') \quad \Longleftrightarrow \quad (t+lpha,z) \succsim (t'+lpha,z').$$

See also:

 $\rightarrow~Stationarity$ for dated rewards, translation invariance of utility functionals etc.

Homotheticity: X = cone in vector space

• For all $\alpha > 0$:

$$x \succeq y \iff \alpha x \succeq \alpha y.$$

See also:

 \rightarrow Cobb-Douglas: for all $(\alpha_1, \ldots, \alpha_K) \in \mathbb{R}_{++}^K$, and $x, y \in \mathbb{R}_+^K$,

 $(x_1,\ldots,x_K) \succeq (y_1,\ldots,y_K) \iff (\alpha_1 x_1,\ldots,\alpha_K x_K) \succeq (\alpha_1 y_1,\ldots,\alpha_K y_K).$

ightarrow Constant Relative Risk Aversion: for all $\lambda > 0$, and $X, Y \in L^{\infty}$,

$$X \succeq Y \quad \Longleftrightarrow \quad \lambda X \succeq \lambda Y.$$

Examples II

Independence/Mixture Invariance: X is mixture space

• vNM Independence: for all $\alpha \in (0, 1]$, and $\eta \in X$,

$$\mu \succeq
u \quad \iff \quad \alpha \mu + (1 - \alpha)\eta \succeq \alpha
u + (1 - \alpha)\eta.$$

- See also:
 - \rightarrow *-independence axioms for Anscombe-Aumann acts, <u>dilutions</u> of Blackwell experiments à la (Pomatto et al '23) etc.

Stationarity: $X = Z^{\mathbb{N}}$

• For all $z \in Z$:

$$(x_1,\ldots) \succeq (y_1,\ldots) \quad \iff \quad (z,x_1,\ldots) \succeq (z,y_1,\ldots).$$

Examples III

Convolution Invariance: X = lotteries on \mathbb{R} with bounded support

• For all $\eta \in X$:

$$\mu \succsim \nu \quad \iff \quad \mu * \eta \succsim \nu * \eta.$$

See also:

 $\rightarrow~$ Constant Absolute Risk Aversion: for all $\alpha \in \mathbb{R}$

$$\mu \succeq \nu \quad \iff \quad \mu * \delta_{\alpha} \succeq \nu * \delta_{\alpha}.$$

Products: X = Blackwell experiments for finite set of states of the world Θ
For all (T, {η_θ}_{θ∈Θ}) ∈ X:

 $(S, \{\mu_{\theta}\}_{\theta \in \Theta}) \succeq (S', \{\nu_{\theta}\}_{\theta \in \Theta}) \iff (S \times T, \{\mu_{\theta} \otimes \eta_{\theta}\}_{\theta \in \Theta}) \succeq (S' \times T, \{\nu_{\theta} \otimes \eta_{\theta}\}_{\theta \in \Theta}),$ where \succeq denotes 'more costly.'

Existing Work

- Richter ('66 ECMA): Rationality (general environments)
- Afriat ('67 IER): Rational, monotone, convex, continuous preferences (linear budgets)
- Nishimura, Ok, Quah ('17 AER): Rational, monotone, continuous preferences (general topological environments)

Existing Work

- Richter ('66 ECMA): Rationality (general environments)
- Afriat ('67 IER): Rational, monotone, convex, continuous preferences (linear budgets)
- Nishimura, Ok, Quah ('17 AER): Rational, monotone, continuous preferences (general topological environments)

Existing Work

- Richter ('66 ECMA): Rationality (general environments)
- Afriat ('67 IER): Rational, monotone, convex, continuous preferences (linear budgets)
- Nishimura, Ok, Quah ('17 AER): Rational, monotone, continuous preferences (general topological environments)

This Paper

- Richter ('66 ECMA): Rationality (general environments)
- Afriat ('67 IER): Rational, monotone, convex, continuous preferences (linear budgets)
- Nishimura, Ok, Quah ('17 AER): Rational, monotone, continuous preferences (general topological environments)

Today: Rational preferences with arbitrary monotonicity/invariance axioms, on arbitrary environments.

Let X be a set of alternatives, and \mathcal{M} a given collection of transformations $X \to X$.

We assume as data a pair of observed **revealed preference** relations $\langle \succeq_R, \succ_R \rangle$.

- The relation \succeq_R is 'revealed preferred,' and \succ_R is 'revealed strictly preferred.'
- Focus on relations allows us to abstract from details of choice.
- Able to straightforwardly include arbitrary monotonicity requirements.

<u>**Primitives</u>**: X, \mathcal{M} , and $\langle \succeq_R, \succ_R \rangle$. We assume only $\mathrm{id} \in \mathcal{M}$, that \mathcal{M} is \circ -closed and that \succeq_R is reflexive.</u>

Definition

An order pair $\langle R, P \rangle$ is a pair of binary relations $R, P \subseteq X \times X$, such that $P \subseteq R$.

- However, sometimes helpful to consider order pairs where P is not necessarily the asymmetric part of R, e.g. $\langle \succeq_R, \succ_R \rangle$.

Definition

An order pair $\langle R', P' \rangle$ extends $\langle R, P \rangle$ if: (i) $R \subseteq R'$, and (ii) $P \subseteq P'$.

Primary Question: When can the data $\langle \succeq_R, \succ_R \rangle$ be extended into an \mathcal{M} -invariant preference relation \succeq ?

- \rightarrow Existence of extending preference \iff rationalizable (à la Richter).
- $\rightarrow\,$ Patterns which preclude existence of extension are *falsifiable predictions* of the model.

Notational Convention

We will use the following notation:

- (i) **Compositions**: We denote $\omega \circ \omega'$ by juxtaposition, i.e. $\omega \omega'$.
- (ii) **Transformations**: We denote $\omega(x)$ also by juxtaposition, i.e. ωx .
- (iii) **Singleton sets**: When writing $\{(x, y)\}$, we omit curly braces, i.e. (x, y).

Suppose $x, y \in X$ are \succeq_R -unrelated.

Observation

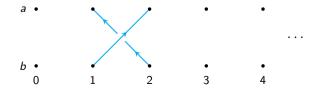
If we want to add a relation, e.g. $x \succeq y$, we generally pick up infinitely many **knock-on effects**, e.g. $\omega x \succeq \omega y$ for each $\omega \in \mathcal{M}$.

 \rightarrow Even when adding $x \succeq y$ alone does not, *these can create cycles*.

Example

Let
$$X = \{a, b\} \times \{0, 1, 2, ...\}$$
, with $\mathcal{M} = \{(z, t) \mapsto (z, t + n)\}$, $n = 0, 1, ...$ Suppose we observe:
(a, 2) $\succ_R (b, 1)$

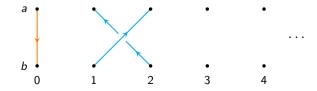
 $(a, 1) \succ_R (b, 2).$



Example

Let
$$X = \{a, b\} \times \{0, 1, 2, ...\}$$
, with $\mathcal{M} = \{(z, t) \mapsto (z, t + n)\}$, $n = 0, 1, ...$ Suppose we observe:
(a, 2) $\succ_R (b, 1)$

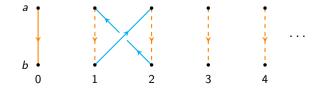
 $(a, 1) \succ_R (b, 2).$



Example

Let
$$X = \{a, b\} \times \{0, 1, 2, ...\}$$
, with $\mathcal{M} = \{(z, t) \mapsto (z, t + n)\}$, $n = 0, 1, ...$ Suppose we observe:
(a, 2) $\succ_R (b, 1)$

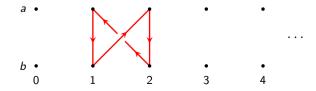
 $(a,1) \succ_R (b,2).$



Example

Let
$$X = \{a, b\} \times \{0, 1, 2, ...\}$$
, with $\mathcal{M} = \{(z, t) \mapsto (z, t + n)\}$, $n = 0, 1, ...$ Suppose we observe:
(a, 2) $\succ_R (b, 1)$

 $(a, 1) \succ_R (b, 2).$



Definition

Given data $\langle \succeq_R, \succ_R \rangle$, define its \mathcal{M} -closure $\langle \succeq_R^{\mathcal{M}}, \succ_R^{\mathcal{M}} \rangle$ via:

$$\omega x \succeq_R^{\mathcal{M}} \omega y \quad \Longleftrightarrow \quad x \succeq_R y$$

and

$$\omega x \succ_R^{\mathcal{M}} \omega y \quad \Longleftrightarrow \quad x \succ_R y$$

Intuition: Just add all the 'translates' of pairs in $\langle \succeq_R, \succ_R \rangle$. Since $id \in \mathcal{M}$, the \mathcal{M} -closure extends $\langle \succeq_R, \succ_R \rangle$.

Theorem

Let \mathcal{M} be commutative, i.e. $\omega \circ \omega' = \omega' \circ \omega$ for all $\omega, \omega' \in \mathcal{M}$. Then the following are equivalent:

(i) The data $\langle \succeq_R, \succ_R \rangle$ are rationalizable by an \mathcal{M} -invariant preference relation.

(ii) The data's \mathcal{M} -closure $\langle \succeq_R^{\mathcal{M}}, \succ_R^{\mathcal{M}} \rangle$ is acyclic.

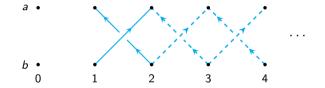
Proof Sketch

Big Picture: Classical transfinite induction argument...but trickier details.

Proof Sketch:

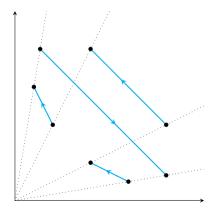
- If (≿^M_R, ≻^M_R) acyclic, commutativity allows us to straightforwardly extend data to invariant preorder.
- Show that if x, y are incomparable in this preorder, there exists an invariant preorder extension which ranks this pair.
 - → Invariance and commutativity imply that if no such extension exists, $\langle \succeq_R^{\mathcal{M}}, \succ_R^{\mathcal{M}} \rangle$ must contain a cycle...but this cycle may be *very* large/complicated.
- Standard Zorn's lemma argument provides maximal transitive, invariant extension, which must necessarily be complete by the preceding step.

Stationary Extensions: Revisited

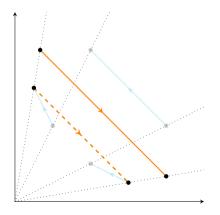


<u>Observation</u>: $\langle \succeq_R^{\mathcal{M}}, \succ_R^{\mathcal{M}} \rangle$ is acyclic — thus there exist stationary rationalizations!

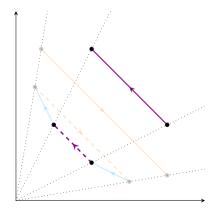
Example



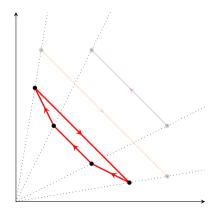
Example



Example



Example



What's New Here

- (i) Characterization of testable implications for some models where we had none, even via Afriat-type results.
 - \rightarrow General Fishburn-Rubinstein preferences, compactly supported monetary lotteries under convolution, general CARA/CRRA, etc. Dilution-invariant/Blackwell-monotone costliness orderings for experiments.
 - $\rightarrow\,$ Even simple things like general (i.e. not necc. monotone) quasilinear or homothetic preferences.
- (ii) Characterization of testable implications of classical models but for data from arbitrary budgets:
 - \rightarrow Monotone and quasilinear/homothetic/translation-invariant preferences etc.

Definition

Let S be finite set of states of the world, and $X = 2^S$. A preference \succeq on X is a **qualitative probability** if:

$$A \succeq B \iff A \cup C \succeq B \cup C,$$

for all events A, B and C disjoint from $A \cup B$.

We say a qualitative probability is *probabilistically sophisticated* if it can be represented by some measure in $\Delta(S)$.

Question: When can a qualitative probability be represented by a probability measure?

Orders on Functions

Let $X^* = \mathbb{Z}^S$ denote the set of all integer-valued functions on S, and let \mathcal{M} denote the set of transformations on X^* of the form $f \mapsto f + g$, for $g \in X^*$.

Any qualitative probability *induces* a transitive (but incompete) order ≿* on X* via:

$$A \succeq B \iff \mathbb{1}_A \succeq^* \mathbb{1}_B.$$

Any probability measure μ ∈ Δ(S) induces an (i) complete, (ii) transitive, (iii) monotone, and (iv) *M*-invariant ordering ≽ on X* via:

$$f \succeq g \quad \Longleftrightarrow \quad \int f \, d\mu \geq \int g \, d\mu.$$

• However, not every order satisfying (i) - (iv) has such a representation...

A Simple (New) Characterization

The following is a straightforward consequence of Theorem 1.4 in Scott (1964).

Proposition

A qualitative probability \succeq on X is probabilistically sophisticated if and only if \succeq^* can be extended to an \mathcal{M} -invariant preference on X^* .

Thus:

Corollary

A qualitative probability \succeq is representable by a probability measure if and only if the M-closure of \succeq^* is acyclic.

Assumption

Suppose that $\langle \succeq_R, \succ_R \rangle$ is obtained from price-consumption data.

In the Paper: Show our acyclicity condition on $\langle \succeq_R^{\mathcal{M}}, \succ_R^{\mathcal{M}} \rangle$ reduces to standard, model-specific GARP variations from literature.

 \rightarrow E.g. HARP (Varian '83), cyclic monotonicity (Brown & Calsamiglia '07) etc.

Without Commutativity, All Bets Are Off

Example

Let Z be a space of prizes, and $X = Z^{\mathbb{N}}$. Let \mathcal{M} consist of all transformations of the form:

$$(x_1, x_2, \ldots) \quad \mapsto \quad (z, x_1, \ldots)$$

for some $z \in Z$. Suppose we observe \succ_R given by:

$$\begin{array}{ll} (a, x_1, \ldots) \succ_R (b, y_1, \ldots) & (c, y_1, \ldots) \succ_R (d, x_1, \ldots) \\ (b, x_1, \ldots) \succ_R (a, y_1, \ldots) & (d, y_1, \ldots) \succ_R (c, x_1, \ldots) \end{array}$$

for $a, b, c, d \in Z$, and $x, y \in X$. Note (i) that \succ_R is transitive, and (ii) $\succ_R^{\mathcal{M}}$ is acyclic.

Intuition: Something similar to the Fishburn-Rubinstein example goes wrong.

 \rightarrow Adding $y \succeq x$ yields knock-on effects (i) $ay \succeq ax$, and (ii) $by \succeq bx$. But then:

$$ax \succ_R by \succeq bx \succ_R ay \succeq ax$$

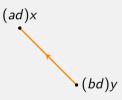
 \rightarrow But, analogously, adding $x \succeq y$ also creates a cycle:

$$cy \succ_R dx \succeq dy \succ_R cx \succeq cy.$$

Example

Suppose we allow ourselves to pass the transforms a, b, c, d through each other. Recall:

$$ax \succ_R by$$
 $bx \succ_R ay$ $cy \succ_R dx$ $dy \succ_R cx$.

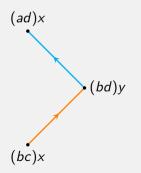


$$\begin{array}{rcl} ax \succ_{R}^{\mathcal{M}} by & \mathrm{HYP} \\ \Longrightarrow & (da)x \succ_{R}^{\mathcal{M}} (db)y & \mathrm{INV} \\ \Longrightarrow & (ad)x \succ_{R}^{\mathcal{M}} (bd)y & \mathrm{COM} \end{array}$$

Example

Suppose we allow ourselves to pass the transforms a, b, c, d through each other. Recall:

$$ax \succ_R by$$
 $bx \succ_R ay$ $cy \succ_R dx$ $dy \succ_R cx$.

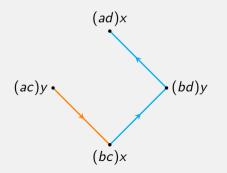


$$dy \succ_{R}^{\mathcal{M}} cx \qquad \text{HYP}$$
$$\implies (bd)y \succ_{R}^{\mathcal{M}} (bc)x \quad \text{INV}$$

Example

Suppose we allow ourselves to pass the transforms a, b, c, d through each other. Recall:

$$ax \succ_R by$$
 $bx \succ_R ay$ $cy \succ_R dx$ $dy \succ_R cx$

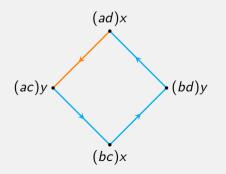


$$\begin{array}{rcl} bx \succ^{\mathcal{M}}_{R} ay & \mathrm{HYP} \\ \Longrightarrow (cb)x \succ^{\mathcal{M}}_{R} (ca)y & \mathrm{INV} \\ \Longrightarrow (bc)x \succ^{\mathcal{M}}_{R} (ac)y & \mathrm{COM} \end{array}$$

Example

Suppose we allow ourselves to pass the transforms a, b, c, d through each other. Recall:

$$ax \succ R by$$
 $bx \succ R ay$ $cy \succ R dx$ $dy \succ R cx$



$$cy \succ_{R}^{\mathcal{M}} dx \qquad \text{HYP}$$
$$\implies (ac)y \succ_{R}^{\mathcal{M}} (ad)x \quad \text{INV}$$

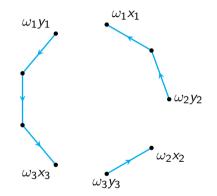
Definition

We say $\omega_1, \ldots, \omega_N \in \mathcal{M}$ and $x_1, y_1, \ldots, x_N, y_N \in X$ define a **broken cycle** if:

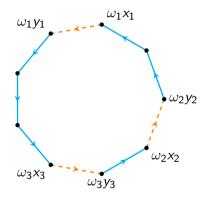
$$\begin{array}{cccc} \omega_1 x_1 & \succsim_R^{\mathsf{T}} & \omega_2 y_2 \\ \omega_2 x_2 & \succsim_R^{\mathsf{T}} & \omega_3 y_3 \\ \vdots & & \vdots \\ \omega_N x_N & \succsim_R^{\mathsf{T}} & \omega_1 y_1, \end{array}$$

and x_i is not comparable to y_i , for all $1 \le i \le N$. If any \succeq_R^T sequence contains a \succ_R , we call it a *strict* broken cycle.

Intuition



Intuition



...and Forbidden Subrelations

Suppose we have a broken cycle:

Definition

An order pair $\langle F, G \rangle$ is a **forbidden subrelation** obtained from (*) if:

(i) The relation
$$F = \{(y_1, x_1), \dots, (y_N, x_N)\}$$
; and
(ii) If (*) is not strict, then $\emptyset \subsetneq G (\subseteq F)$.

Intuition

Subrelations as Restrictions: Suppose $\langle F, G \rangle$ is a forbidden subrelation. If a binary relation \succeq extends it then:

- (i) Every pair in F belongs to \succeq ; and
- (ii) Every pair in G belongs to \succ .

But this means \succeq completes the broken cycle which generated $\langle F, G \rangle \rightarrow$ can't be a preference.

 \rightarrow Forbidden subrelations capture *set-valued* restrictions on the extension problem.

A Necessary Condition:

When can we extend the data $\langle \succeq_R, \succ_R \rangle$ while *not* extending any forbidden subrelations?

Example

Suppose we have two forbidden subrelations $\langle F_1, \varnothing \rangle$ and $\langle F_2, \varnothing \rangle$, where:

$$F_1 = \{(x, y), (y', x')\}$$
 and $F_2 = \{(y, x), (y'', x'')\}.$

Any rationalizing preference \succeq can't extend either F_1 or F_2 . But it must rank $x \succeq y$ or $y \succeq x$ — which means it also can't extend:

$$\tilde{F} = (F_1 \setminus (x, y)) \cup (F_2 \setminus (y, x)).$$

The relation \tilde{F} encodes an *indirect* restriction to the extension problem.

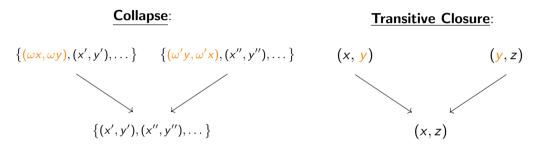
The 'Collapse'

Definition

Given finite order pairs $\langle F_1, G_1 \rangle$, and $\langle F_2, G_2 \rangle$, we say an order pair $\langle \tilde{F}, \tilde{G} \rangle$ is their **collapse** if:

(i) For some
$$\omega, \omega' \in \mathcal{M}$$
 and $x, y \in X$,
 $(\omega x, \omega y) \in F_i \setminus G_i$ and $(\omega' y, \omega' x) \in F_j$,
where $i \neq j$.
(ii) The relations \tilde{F} and \tilde{G} are given by:
 $\tilde{F} = (F_i \setminus (\omega x, \omega y)) \cup (F_j \setminus (\omega' y, \omega' x))$
and
 $\tilde{G} = G_i \cup (G_j \setminus (\omega' y, \omega' x))$.

Generating Restrictions: New and Old



Cancel out 'clashing pair.'

Cancel out 'clashing alternative.'

Strong Acyclicity

Let \mathcal{F}^0 denote the set of all forbidden subrelations generated by some broken cycle in the data.

Define: For all $n \ge 1$,

$$\mathcal{F}^n = \{ \langle F, G \rangle : \langle F, G \rangle \text{ is collapse of pairs in } \mathcal{F}^{n-1} \} \cup \mathcal{F}^{n-1}.$$

Let:

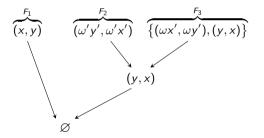
$$\mathcal{F}^* = \bigcup_{n \ge 1} \mathcal{F}^n.$$

Definition

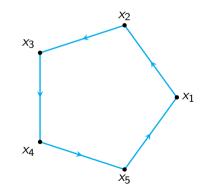
We say that $\langle \succeq_R, \succ_R \rangle$ is strongly acyclic if $\langle \emptyset, \emptyset \rangle \notin \mathcal{F}^*$.

Cycles: New and Old

Collapse: A 'cycle' is a collection of order pairs where every *relation* cancels, e.g. $G_1 = G_2 = G_3 = \emptyset$, and:



<u>**Transitive closure**</u>: A cycle is a set of pairs where every *alternative* cancels.



Throwback: A Violation of Strong Acyclicity

Example

Suppose again that we've observed:

 $\begin{array}{ll} (a, x_1, \ldots) \succ_R (b, y_1, \ldots) & (c, y_1, \ldots) \succ_R (d, x_1, \ldots) \\ (b, x_1, \ldots) \succ_R (a, y_1, \ldots) & (d, y_1, \ldots) \succ_R (c, x_1, \ldots) \end{array}$

for $a, b, c, d \in Z$, and $x, y \in X$. These are broken cycles, with forbidden subrelations:

 $\langle (y,x), \varnothing \rangle$ and $\langle (x,y), \varnothing \rangle$.

Their collapse is $\langle \emptyset, \emptyset \rangle$, hence $\langle \succeq_R, \succ_R \rangle$ is not strongly acyclic!

Theorem

The following are equivalent:

(i) The data $\langle \succeq_R, \succ_R \rangle$ are rationalizable by an \mathcal{M} -invariant preference relation.

(ii) The data are strongly acyclic.

<u>**Note</u></u>: Requires no assumptions on X, \mathcal{M}, or \langle \succeq_R, \succ_R \rangle.</u>**

Idea: Re-encode problem in terms of propositional logic.

• For all $(x, y) \in X \times X$, we define two boolean variables:

 $[\mathtt{x} \succeq \mathtt{y}] \quad \mathrm{and} \quad [\mathtt{x} \succ \mathtt{y}].$

- We denote the collection of all these variables by \mathcal{V} .
- Introduce formulas relating these variables, so that there is a 1-1 correspondence between assignments of {⊤, ⊥} satisfying these formulas, and invariant rationalizations of ⟨≿_R, ≻_R⟩.

Proof Sketch: Preliminaries

(i) **Completeness**: For each $x, y \in X$:

 $[x \succeq y] \lor [y \succeq x].$

(ii) Coherency: For each $x, y \in X$, we have two formulas:

$$\neg [\mathbf{x} \succeq \mathbf{y}] \lor \neg [\mathbf{y} \succ \mathbf{x}],$$

and

$$[\mathbf{x} \succeq \mathbf{y}] \lor [\mathbf{y} \succ \mathbf{x}].$$

(iii) **Transitivity**: For all $x, y, z \in X$:

$$\neg [\mathtt{x} \succeq \mathtt{y}] \lor \neg [\mathtt{y} \succeq \mathtt{z}] \lor [\mathtt{x} \succeq \mathtt{z}].$$

(iv) <u>Extension</u>: For all $(x, y) \in \gtrsim_R$: $[x \succeq y],$ and for all $(x, y) \in \succ_R$: $[x \succ y].$ (v) <u>Invariance</u>: For all $x, y \in X$ and $\omega \in \mathcal{M}$:

$$\neg [\mathtt{x} \succeq \mathtt{y}] \lor [\omega \mathtt{x} \succeq \omega \mathtt{y}],$$

and

 $[\mathtt{x} \succeq \mathtt{y}] \lor \neg [\omega \mathtt{x} \succeq \omega \mathtt{y}].$

Let Φ denote the collection of all formulas of form (i) - (v).

Lemma

There exists an \mathcal{M} -invariant preference rationalizing $\langle \succeq_R, \succ_R \rangle$ if and only if Φ is satisfiable.

Interlude: Propositional Resolution

Suppose A_1, A_2, A_3 are *literals*, i.e. each equal to V_i or $\neg V_i$ for some $V_i \in \mathcal{V}$, and consider the clauses:

$$C = A_1 \lor A_2$$
 and $C' = \neg A_1 \lor A_3$.

Observation

If C and C' evaluate to true for some assignment of truth values to the underlying variables, so must:

$$D=A_2\vee A_3,$$

as either A_1 or $\neg A_1$ must be true.

Interlude: Propositional Resolution

More generally, let A_1, \ldots, A_K , B_1, \ldots, B_L be literals, where $A_1 = \neg B_1$, and consider the clauses:

$$C = \bigvee_{k=1}^{K} A_k$$
 and $C' = \bigvee_{l=1}^{L} B_l$.

If C and C' evaluate to true for some assignment of truth values, then so must:

$$D = \left[\bigvee_{k=2}^{K} A_k\right] \vee \left[\bigvee_{l=2}^{L} B_l\right].$$

Definition

The clause *D* is called the **resolvent** of *C*, *C'*, and $C \wedge C'$ is logically equivalent to $C \wedge C' \wedge D$.

Suppose we have two clauses:

$$C = A_1$$
 and $C' = \neg A_1$.

Their resolvent is the empty clause, \emptyset , which is always *false*. Then $C \wedge C'$ is logically equivalent to $C \wedge C' \wedge \emptyset$, which is unsatisfiable, hence so is $C \wedge C'$.

Takeaway: If, through finitely many resolution steps, we can 'derive' the empty clause, the original collection of clauses must be unsatisfiable.

Proof Sketch: Necessity

Lemma

Suppose $\langle \succeq_R, \succ_R \rangle$ is not strongly acyclic. Then Φ is unsatisfiable.

Proof Sketch:

• Every $\langle F, G \rangle \in \mathcal{F}^0$ can be expressed uniquely as disjunction of negative literals:

$$C_{FG} = \left[\bigvee_{(x,y)\in F\setminus G} \neg [\mathtt{x}\succeq \mathtt{y}]\right] \vee \left[\bigvee_{(x,y)\in G} \neg [\mathtt{x}\succ \mathtt{y}]\right].$$

Every such C_{FG} can be obtained from Φ purely via resolution.

- If $\langle \bar{F}, \bar{G} \rangle$ is the collapse of $\langle F_1, G_1 \rangle$ and $\langle F_2, G_2 \rangle$, $C_{\bar{F}\bar{G}}$ can be obtained iteratively through resolution steps involving $C_{F_1G_1}$, $C_{F_2G_2}$ and clauses in Φ .
- Thus the empty clause can be obtained via resolution from Φ, which is unsatisfiable. Thus Φ is unsatisfiable.

Theorem (Robinson, 1965)

A finite set of clauses Φ' is unsatisfiable if and only if the empty clause \emptyset can be obtained from Φ' through repeated resolution steps.

We rely on a slight strengthening of this result, which is standard in computer science.

Theorem (Negative Resolution Theorem)

A finite set of clauses Φ' is unsatisfiable if and only if the empty clause \varnothing can be obtained from Φ' through repeated resolution, where every step involves a parent clause with no positive literals.

Takeaway: 'Negative resolution,' as a proof strategy, is *refutation-complete*.

Proof Sketch: Sufficiency

Lemma

Suppose Φ is unsatisfiable. Then $\langle \succeq_R, \succ_R \rangle$ is not strongly acyclic.

Proof Sketch:

- By Propositional Compactness (i.e. Tychonoff's theorem), if Φ is unsatisfiable there is a finite, unsatisfiable subset Φ' .
- By the Negative Resolution Theorem, there exists a binary proof tree which derives the empty clause from clauses in Φ' purely via negative resolution.
- Each node on such a proof tree corresponding to a clause with no positive literals is the clausal representation of an order pair in some \mathcal{F}^n , where *n* depends on the node's depth in the tree.
- In particular, the empty order pair $\langle \varnothing, \varnothing \rangle$ belongs to some \mathcal{F}^n and hence \mathcal{F}^* .

Application: Expected Utility

Let X denote the set of probability distributions over some finite prize space, and M denote all transformations of the form:

$$\mu \mapsto \alpha \mu + (1 - \alpha) \nu$$

for some $\alpha \in (0, 1]$ and $\nu \in X$.

Theorem

Suppose \succeq_R is *finite*. Then the following are equivalent:

(i) $\langle \succeq_R, \succ_R \rangle$ is strongly acyclic.

(ii) The data are rationalized by an expected utility preference.

Takeaway: When $\langle \succeq_R, \succ_R \rangle$ finite, able to obtain *continuous* invariant rationalizations.

Suppose the data $\langle \succeq_R, \succ_R \rangle$ are strongly acyclic (\iff rationalizable) but x and y are \succeq_R -unrelated.

Question: When does every invariant rationalization agree on their ranking?

The Dushnik-Miller Theorem

Classically, i.e. in the case when $\mathcal{M} = {\mathrm{id}}$, the answer is not particularly interesting...

Theorem (Dushnik & Miller)

Suppose \succeq_R is an acyclic binary relation with strict component \succ_R . Then:

$$\mathbb{T}_R^{\intercal} = igcap_{\succeq \, \in \, \mathcal{P}(\succsim_R)} \succeq$$

where \succeq_R^{T} denotes the transitive closure of \succeq_R , and $\mathcal{P}(\succeq_R)$ denotes the (non-empty) set of all preference relations extending \succeq_R .

Takeaway: Only out-of-sample predictions are given by $\succeq_R^T \setminus \succeq_R$.

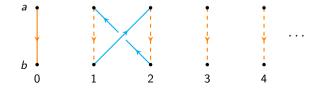
The Invariant Case: More Interesting?

Example

Let $X = \{a, b\} \times \{0, 1, 2, ...\}$. Suppose we observe:

 $(a,2) \succ_R (b,1)$ $(a,1) \succ_R (b,2).$

Under rationality, no restriction on the preference between (a, 0), (b, 0). But every *stationary* rationalization must have $(a, 0) \succ (b, 0)$.



Out of Sample Predictions: An Extreme Example

Suppose $X = \mathbb{R}^2_+$, and \mathcal{M} consists of all transformations $(x_1, x_2) \mapsto (\lambda_1 x_1, \lambda_2 x_2)$, for $\lambda \gg 0$.

 Cobb-Douglas preferences are the unique (i) monotone, (ii) continuous, and (iii) *M*-invariant preferences.

Example

Suppose for some $x, x' \gg 0$, where x, x' are \geq -incomparable, we observe $x \sim_R x'$. There is a *unique* Cobb-Douglas preference consistent with \succeq_R .

Takeaway: By considering more structured rationalizations, obtain (possibly *much*) richer out-of-sample predictions.

Characterizing of Out-of-Sample Predictions

Theorem

Suppose $\langle \succeq_R, \succ_R \rangle$ is strongly acyclic. Then $x \succeq^* y$ (resp. $x \succ^* y$) for every \mathcal{M} -invariant rationalization \succeq^* if and only if:

$$\big\langle (y,x),(y,x) \big\rangle \in \mathcal{F}^* \quad ig(\mathrm{resp.}\big\langle (y,x), \varnothing \big\rangle \in \mathcal{F}^* ig).$$

Takeaway: Every rationalizing preference ranks x over y if and only if the opposite relation arises as a 'singleton' restriction.

Proof Sketch:

- Clearly if \mathcal{F}^* contains some singleton restriction, then any restriction must satisfy it and hence agree on that pair.
- Conversely, suppose every extension agrees x ≥^{*} y. Then every valid model for Φ evaluates [y > x] to ⊥.
- Define $\tilde{\Phi}$ from Φ by first:
 - (i) Removing any clause containing [y \succ x]; and
 - (ii) Deleting $\neg[y \succ x]$ from any remaining clause which contains it.
- By construction, there is a 1-1 correspondence between models for Φ that assigns $[y \succ x]$ to \top and models for $\tilde{\Phi}$, hence $\tilde{\Phi}$ is unsatisfiable.

Proof Sketch: Continued

Proof Sketch (Cont'd):

- By compactness, there exists a finite unsatisfiable subset $\tilde{\Phi}' \subset \tilde{\Phi}$, and a derivation of \emptyset from $\tilde{\Phi}'$ via negative resolution.
- Every clause D in the proof tree that contains no positive literals either (i) can be derived from Φ via NR, or (ii) D ∨ ¬[y ≻ x] can be derived from Φ via NR.
- Since Φ is satisfiable by hypothesis, \varnothing cannot be obtained from Φ in this way, thus $\varnothing \lor \neg [y \succ x] = \neg [y \succ x]$ can be.
- As $\neg[y \succ x]$ contains no positive literals and is deduced from Φ via negative resolution, $\langle (y, x), (y, x) \rangle$ can be obtained via collapses from \mathcal{F}^0 . An analogous argument holds for $x \succ^* y$.

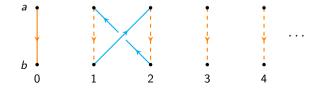
Example Revisited

Example

Let $X = \{a, b\} \times \{0, 1, 2, ...\}$. Suppose we observe:

 $(a,2) \succ_R (b,1)$ $(a,1) \succ_R (b,2).$

Under rationality, no restriction on the preference between (a, 0), (b, 0). But every *stationary* rationalization must have $(a, 0) \succ (b, 0)$.



Extension: Invariance Under Partial Functions

- Additive Separability/P2: $X = \mathcal{X}^S$, where |S| > 2. For all $A \subseteq S$ and $x, y, z, z' \in \mathcal{X}$: $(x_A z) \succeq (y_A z) \iff (x_A z') \succeq (y_A z').$
 - → For each $B \subseteq S$ and acts \hat{z}, \hat{z}' on B, have map that takes all acts equal to \hat{z} on B and replaces them with \hat{z}' .
- Qualitative Probabilities: X = A, an algebra of subsets of S.

$$A \succeq B \iff A \cup C \succeq B \cup C$$

for any $C \in \mathcal{A}$ disjoint from A, B.

- \rightarrow For each $C \in A$ map that takes union with C, but whose domain is precisely those sets disjoint from C.
- Many More: Comonotonic additivity for CEU, sign-comonotonic consistency for CPT (Wakker & Tversky '93) etc.

Long Term Objective

A 'modular,' 'universal' revealed preference theory: "if your axioms fall into bins A, B and C, then the testable implications are ____."

Long-run Objective: Write the 'last revealed preference theorem.'

Conclusion

- Many of preference properties of first-order economic importance are *invariance* axioms.
- Historically, no unified theory of testable implications. Reliance on ad hoc methods in special cases.
- **This Paper**: Characterization of the testable implications of *any* axiom of this form, for any revealed preference data, on any domain. Characterization of the out-of-sample properties generated by any such axioms.
 - $\rightarrow\,$ Novel methodological approach that lends itself to further generalizations applying tools from computer science and logic.

Thank You!

Any Questions?