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Introduction

Nearly all economic models built on foundation of economic actors maximizing
individual well-being.

• Requires specifying how actors evaluate various stylized trade-offs and decisions.

• If these assumptions inconsistent with broad empirical regularities, models can
yield unrealistic/outright incorrect predictions (e.g. Mehra & Prescott ’85).



Revealed Preference

A Basic Question: How do we systematically obtain the testable implications of
various models of preference and decision?

Classically, revealed preference has studied:

(i) Testable implications of rational behavior (generally)

→ Model-free approach

→ Doesn’t speak to specific structure(s) we’re often interested in

(ii) Testable implications of specific theories on model-by-model basis

→ Relies on special model-specific structure; no unified theory.

→ Often relies on Afriat-type machinery; only valid for particular environments.



‘Universal’ Revealed Preference Theory

We are interested in studying the general mapping:

Model 7→ Testable Implications.

A Less Basic Question: Can we obtain general results which characterize empirical
content of any theory whose axioms belong to certain broad classes?

→ Need to exploit common mathematical structure behind various classes of axioms.



Categorizing Axioms

Rationality Monotonicity Continuity Invariance Shape

• ‘⪰ is complete
and transitive.’

• For some order ⊵
on alternatives:
‘x ⊵ y implies
x ⪰ y ’

• Local non-satiation

• Continuity, mixture-
continuity etc.

• Archimedian/
solvability axioms

• Fineness/tightness

• ‘⪰ is preserved
under some family
of transforms.’

• ‘Upper contour sets
of ⪰ have certain
shape’



What Are Invariance Axioms?

Definition

A binary relation R ⊆ X × X , with asymmetric component P, is invariant under a
transformation ω : X → X if, for all x , y ∈ X :

x R y =⇒ ω(x)R ω(y),

and
x P y =⇒ ω(x)P ω(y).

Note: If R is invariant under ω, ω′, then it is also invariant under ω ◦ ω′ and ω′ ◦ ω.

→ Collection of transformations leaving R invariant always forms semigroup under ◦.

→ If R is invariant under every transformation in some semigroup of transformations
M, we say it is M-invariant.



Examples I

Quasilinearity: X = R+ × Z .
• For all α ≥ 0:

(t, z) ≿ (t ′, z ′) ⇐⇒ (t + α, z) ≿ (t ′ + α, z ′).

• See also:
→ Stationarity for dated rewards, translation invariance of utility functionals etc.

Homotheticity: X = cone in vector space
• For all α > 0:

x ≿ y ⇐⇒ αx ≿ αy .

• See also:
→ Cobb-Douglas: for all (α1, . . . , αK ) ∈ RK

++, and x , y ∈ RK
+,

(x1, . . . , xK ) ≿ (y1, . . . , yK ) ⇐⇒ (α1x1, . . . , αKxK ) ≿ (α1y1, . . . , αKyK ).

→ Constant Relative Risk Aversion: for all λ > 0, and X ,Y ∈ L∞,

X ≿ Y ⇐⇒ λX ≿ λY .



Examples II

Independence/Mixture Invariance: X is mixture space

• vNM Independence: for all α ∈ (0, 1], and η ∈ X ,

µ ≿ ν ⇐⇒ αµ+ (1− α)η ≿ αν + (1− α)η.

• See also:

→ ∗-independence axioms for Anscombe-Aumann acts, dilutions of Blackwell
experiments à la (Pomatto et al ’23) etc.

Stationarity: X = ZN

• For all z ∈ Z :

(x1, . . .) ≿ (y1, . . .) ⇐⇒ (z , x1, . . .) ≿ (z , y1, . . .).



Examples III

Convolution Invariance: X = lotteries on R with bounded support

• For all η ∈ X :
µ ≿ ν ⇐⇒ µ ∗ η ≿ ν ∗ η.

• See also:

→ Constant Absolute Risk Aversion: for all α ∈ R

µ ≿ ν ⇐⇒ µ ∗ δα ≿ ν ∗ δα.

Products: X = Blackwell experiments for finite set of states of the world Θ
• For all (T , {ηθ}θ∈Θ) ∈ X :

(
S , {µθ}θ∈Θ

)
≿

(
S ′, {νθ}θ∈Θ

)
⇐⇒

(
S × T , {µθ ⊗ ηθ}θ∈Θ

)
≿

(
S ′ × T , {νθ ⊗ ηθ}θ∈Θ

)
,

where ≿ denotes ‘more costly.’



Existing Work

Rationality Monotonicity Continuity Invariance Shape

• Richter (’66 ECMA): Rationality (general environments)

• Afriat (’67 IER): Rational, monotone, convex, continuous preferences (linear budgets)

• Nishimura, Ok, Quah (’17 AER): Rational, monotone, continuous preferences (general
topological environments)

This Paper: Rational preferences with arbitrary monotonicity/invariance axiom, on arbitrary

environments.
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Preliminaries

Let X be a set of alternatives, and M a given collection of transformations X → X .

We assume as data a pair of observed revealed preference relations ⟨≿R ,≻R⟩.

• The relation ≿R is ‘revealed preferred,’ and ≻R is ‘revealed strictly preferred.’

• Focus on relations allows us to abstract from details of choice.

• Able to straightforwardly include arbitrary monotonicity requirements.

Primitives: X , M, and ⟨≿R ,≻R⟩. We assume only id ∈ M, that M is ◦ - closed and
that ≿R is reflexive.



Order Pairs

Definition

An order pair ⟨R,P⟩ is a pair of binary relations R,P ⊆ X × X , such that P ⊆ R.

• Any binary relation ⪰ can be regarded as an order pair ⟨⪰,≻⟩, where we’ll use ≻
to denote Asymm(⪰).

• However, sometimes helpful to consider order pairs where P is not necessarily the
asymmetric part of R, e.g. ⟨≿R ,≻R⟩.



Extending Binary Relations

Definition

An order pair ⟨R ′,P ′⟩ extends ⟨R,P⟩ if: (i) R ⊆ R ′, and (ii) P ⊆ P ′.

Primary Question: When can the data ⟨≿R ,≻R⟩ be extended into an M-invariant
preference relation ⪰?

→ Existence of extending preference ⇐⇒ rationalizable (à la Richter).

→ Patterns which preclude existence of extension are falsifiable predictions of the
model.



Notational Interlude

Notational Convention

We will use the following notation:

(i) Compositions: We denote ω ◦ ω′ by juxtaposition, i.e. ωω′.

(ii) Transformations: We denote ω(x) also by juxtaposition, i.e. ωx .

(iii) Singleton sets: When writing
{
(x , y)

}
, we omit curly braces, i.e. (x , y).



The Fundamental Difficulty: Knock-on Effects

Suppose x , y ∈ X are ≿R -unrelated.

Observation

If we want to add a relation, e.g. x ⪰ y , we generally pick up infinitely many
knock-on effects, e.g. ωx ⪰ ωy for each ω ∈ M.

→ Even when adding x ⪰ y alone does not, these can create cycles.



Knock-on Effects: An Example

Example

Let X = {a, b} × {0, 1, 2, . . .}, with M =
{
(z , t) 7→ (z , t + n)

}
, n = 0, 1, . . .. Suppose

we observe:
(a, 2) ≻R (b, 1)

(a, 1) ≻R (b, 2).

Under rationality, no restriction on the preference between (a, 0), (b, 0). But every
stationary rationalization must have (a, 0) ≻ (b, 0).

b

a

0 1 2 3 4

· · ·
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The M-Closure

Definition

Given data ⟨≿R ,≻R⟩, define its M-closure ⟨≿M
R ,≻M

R ⟩ via:

ωx ≿M
R ωy ⇐⇒ x ≿R y

and

ωx ≻M
R ωy ⇐⇒ x ≻R y

Intuition: Just add all the ‘translates’ of pairs in ⟨≿R ,≻R⟩. Since id ∈ M, the
M-closure extends ⟨≿R ,≻R⟩.



Commutative Families: An Extension Theorem

Theorem

Let M be commutative, i.e. ω ◦ ω′ = ω′ ◦ ω for all ω, ω′ ∈ M. Then the following are
equivalent:

(i) The data ⟨≿R ,≻R⟩ are rationalizable by an M-invariant preference relation.

(ii) The data’s M-closure ⟨≿M
R ,≻M

R ⟩ is acyclic.



Proof Sketch

Big Picture: Classical transfinite induction argument...but trickier details.

Proof Sketch:

• If ⟨≿M
R ,≻M

R ⟩ acyclic, commutativity allows us to straightforwardly extend data to
invariant preorder.

• Show that if x , y are incomparable in this preorder, there exists an invariant
preorder extension which ranks this pair.

→ Invariance and commutativity imply that if no such extension exists, ⟨≿M
R ,≻M

R ⟩
must contain a cycle...but this cycle may be very large/complicated.

• Standard Zorn’s lemma argument provides maximal transitive, invariant extension,
which must necessarily be complete by the preceding step.



Stationary Extensions: Revisited

b

a

0 1 2 3 4

· · ·

Observation: ⟨≿M
R ,≻M

R ⟩ is acyclic — thus there exist stationary rationalizations!



Example: An M-Closure Cycle

Example

Let X = RN
+, and M consist of the maps x 7→ λx , with λ > 0.
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What’s New Here

(i) Characterization of testable implications for some models where we had none,
even via Afriat-type results.

→ General Fishburn-Rubinstein preferences, compactly supported monetary lotteries
under convolution, general CARA/CRRA, etc. Dilution-invariant/Blackwell-
monotone costliness orderings for experiments.

→ Even simple things like general (i.e. not necc. monotone) quasilinear or homothetic
preferences.

(ii) Characterization of testable implications of classical models but for data from
arbitrary budgets:

→ Monotone and quasilinear/homothetic/translation-invariant preferences etc.



Application: Probabilistic Sophistication

Definition

Let S be finite set of states of the world, and X = 2S . A preference ≿ on X is a
qualitative probability if:

A ≿ B ⇐⇒ A ∪ C ≿ B ∪ C ,

for all events A,B and C disjoint from A ∪ B.

We say a qualitative probability is probabilistically sophisticated if it can be represented
by some measure in ∆(S).

Question: When can a qualitative probability be represented by a probability measure?



Orders on Functions

Let X ∗ = ZS denote the set of all integer-valued functions on S , and let M denote the
set of transformations on X ∗ of the form f 7→ f + g , for g ∈ X ∗.

• Any qualitative probability induces a transitive (but incompete) order ≿∗ on X ∗

via:
A ≿ B ⇐⇒ 1A ≿∗

1B .

• Any probability measure µ ∈ ∆(S) induces an (i) complete, (ii) transitive, (iii)
monotone, and (iv) M-invariant ordering ⪰ on X ∗ via:

f ⪰ g ⇐⇒
∫

f dµ ≥
∫

g dµ.

• However, not every order satisfying (i) - (iv) has such a representation...



A Simple (New) Characterization

The following is a straightforward consequence of Theorem 1.4 in Scott (1964).

Proposition

A qualitative probability ≿ on X is probabilistically sophisticated if and only if ≿∗ can
be extended to an M-invariant preference on X ∗.

Thus:

Corollary

A qualitative probability ≿ is representable by a probability measure if and only if the
M-closure of ≿∗ is acyclic.



Connections to Afriat-Type Theories

Assumption

Suppose that ⟨≿R ,≻R⟩ is obtained from price-consumption data.

In the Paper: Show our acyclicity condition on ⟨≿M
R ,≻M

R ⟩ reduces to standard,
model-specific GARP variations from literature.

→ E.g. HARP (Varian ’83), cyclic monotonicity (Brown & Calsamiglia ’07) etc.



Without Commutativity, All Bets Are Off

Example

Let Z be a space of prizes, and X = ZN. Let M consist of all transformations of the
form:

(x1, x2, . . .) 7→ (z , x1, . . .)

for some z ∈ Z . Suppose we observe ≻R given by:

(a, x1, . . .) ≻R (b, y1, . . .)

(b, x1, . . .) ≻R (a, y1, . . .)

(c , y1, . . .) ≻R (d , x1, . . .)

(d , y1, . . .) ≻R (c, x1, . . .)

for a, b, c , d ∈ Z , and x , y ∈ X . Note (i) that ≻R is transitive, and (ii) ≻M
R is acyclic.



What Went Wrong?

Intuition: Something similar to the Fishburn-Rubinstein example goes wrong.

→ Adding y ⪰ x yields knock-on effects (i) ay ⪰ ax , and (ii) by ⪰ bx . But then:

ax ≻R by ⪰ bx ≻R ay ⪰ ax .

→ But, analogously, adding x ⪰ y also creates a cycle:

cy ≻R dx ⪰ dy ≻R cx ⪰ cy .



Non-Commutativity To Blame

Example

Suppose we allow ourselves to pass the transforms a, b, c , d through each other. Recall:

ax ≻R by bx ≻R ay cy ≻R dx dy ≻R cx .

Then in the M-closure:

(bd)y

(ad)x

(ac)y

(bc)x

ax ≻M
R by HYP

=⇒ (da)x ≻M
R (db)y INV

=⇒ (ad)x ≻M
R (bd)y COM
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Broken Cycles

Definition

We say ω1, . . . , ωN ∈ M and x1, y1, . . . , xN , yN ∈ X define a broken cycle if:

ω1x1 ≿⊺
R ω2y2

ω2x2 ≿⊺
R ω3y3

...
...

ωNxN ≿⊺
R ω1y1,

and xi is not comparable to yi , for all 1 ≤ i ≤ N. If any ≿⊺
R sequence contains a ≻R ,

we call it a strict broken cycle.



Intuition

ω2y2

ω1x1ω1y1

ω3x3 ω3y3

ω2x2



Intuition

ω2y2

ω1x1ω1y1

ω3x3 ω3y3

ω2x2



...and Forbidden Subrelations

Suppose we have a broken cycle:

ω1x1 ≿⊺
R ω2y2

ω2x2 ≿⊺
R ω3y3

...
...

ωNxN ≿⊺
R ω1y1,

(∗)

Definition

An order pair ⟨F ,G ⟩ is a forbidden subrelation obtained from (∗) if:

(i) The relation F =
{
(y1, x1), . . . , (yN , xN)

}
; and

(ii) If (∗) is not strict, then ∅ ⊊ G (⊆ F ).



Intuition

Subrelations as Restrictions: Suppose ⟨F ,G ⟩ is a forbidden subrelation. If a binary
relation ⪰ extends it then:

(i) Every pair in F belongs to ⪰; and

(ii) Every pair in G belongs to ≻.

But this means ⪰ completes the broken cycle which generated ⟨F ,G ⟩ → can’t be a
preference.

→ Forbidden subrelations capture set-valued restrictions on the extension problem.

A Necessary Condition:

When can we extend the data ⟨≿R ,≻R⟩ while not extending any forbidden
subrelations?



Indirect Restrictions

Example

Suppose we have two forbidden subrelations ⟨F1,∅⟩ and ⟨F2,∅⟩, where:

F1 =
{
(x , y), (y ′, x ′)

}
and F2 =

{
(y , x), (y ′′, x ′′)

}
.

Any rationalizing preference ⪰ can’t extend either F1 or F2. But it must rank x ⪰ y or
y ⪰ x — which means it also can’t extend:

F̃ =
(
F1 \ (x , y)

)
∪

(
F2 \ (y , x)

)
.

The relation F̃ encodes an indirect restriction to the extension problem.



The ‘Collapse’

Definition

Given finite order pairs ⟨F1,G1⟩, and ⟨F2,G2⟩, we say an order pair ⟨F̃ , G̃ ⟩ is their
collapse if:

(i) For some ω, ω′ ∈ M and x , y ∈ X ,(
ωx , ωy

)
∈ Fi \ Gi and

(
ω′y , ω′x

)
∈ Fj ,

where i ̸= j .

(ii) The relations F̃ and G̃ are given by:

F̃ =
(
Fi \ (ωx , ωy)

)
∪

(
Fj \ (ω′y , ω′x)

)
and

G̃ = Gi ∪
(
Gj \ (ω′y , ω′x)

)
.



Generating Restrictions: New and Old

Collapse:

{
(ωx , ωy), (x ′, y ′), . . .

} {
(ω′y , ω′x), (x ′′, y ′′), . . .

}

{
(x ′, y ′), (x ′′, y ′′), . . .

}

Cancel out ‘clashing pair.’

Transitive Closure:

(x , y) (y , z)

(x , z)

Cancel out ‘clashing alternative.’



Strong Acyclicity

Let F0 denote the set of all forbidden subrelations generated by some broken cycle in
the data.

Define: For all n ≥ 1,

Fn =
{
⟨F ,G ⟩ : ⟨F ,G ⟩ is collapse of pairs in Fn−1

}
∪ Fn−1.

Let:
F∗ =

⋃
n≥1

Fn.

Definition

We say that ⟨≿R ,≻R⟩ is strongly acyclic if ⟨∅,∅⟩ ̸∈ F∗.



Cycles: New and Old

Collapse: A ‘cycle’ is a collection of order
pairs where every relation cancels, e.g.
G1 = G2 = G3 = ∅, and:

F1︷ ︸︸ ︷
(x , y)

F2︷ ︸︸ ︷
(ω′y ′, ω′x ′)

F3︷ ︸︸ ︷{
(ωx ′, ωy ′), (y , x)

}

(y , x)

∅

Transitive closure: A cycle is a set of
pairs where every alternative cancels.

x1

x2

x3

x4

x5



Throwback: A Violation of Strong Acyclicity

Example

Suppose again that we’ve observed:

(a, x1, . . .) ≻R (b, y1, . . .)

(b, x1, . . .) ≻R (a, y1, . . .)

(c , y1, . . .) ≻R (d , x1, . . .)

(d , y1, . . .) ≻R (c, x1, . . .)

for a, b, c , d ∈ Z , and x , y ∈ X . These are broken cycles, with forbidden subrelations:〈
(y , x),∅

〉
and

〈
(x , y),∅

〉
.

Their collapse is ⟨∅,∅⟩, hence ⟨≿R ,≻R⟩ is not strongly acyclic!



Characterizing Invariant Rationalizability

Theorem

The following are equivalent:

(i) The data ⟨≿R ,≻R⟩ are rationalizable by an M-invariant preference relation.

(ii) The data are strongly acyclic.

Note: Requires no assumptions on X , M, or ⟨≿R ,≻R⟩.



Proof Sketch: Preliminaries

Idea: Re-encode problem in terms of propositional logic.

• For all (x , y) ∈ X × X , we define two boolean variables:

[x ⪰ y] and [x ≻ y].

• We denote the collection of all these variables by V.

• Introduce formulas relating these variables, so that there is a 1-1 correspondence
between assignments of {⊤,⊥} satisfying these formulas, and invariant
rationalizations of ⟨≿R ,≻R⟩.



Proof Sketch: Preliminaries

(i) Completeness: For each x , y ∈ X :

[x ⪰ y] ∨ [y ⪰ x].

(ii) Coherency: For each x , y ∈ X , we
have two formulas:

¬[x ⪰ y] ∨ ¬[y ≻ x],

and
[x ⪰ y] ∨ [y ≻ x].

(iii) Transitivity: For all x , y , z ∈ X :

¬[x ⪰ y] ∨ ¬[y ⪰ z] ∨ [x ⪰ z].

(iv) Extension: For all (x , y) ∈ ≿R :

[x ⪰ y],

and for all (x , y) ∈ ≻R :

[x ≻ y].

(v) Invariance: For all x , y ∈ X and
ω ∈ M:

¬[x ⪰ y] ∨ [ωx ⪰ ωy],

and

[x ⪰ y] ∨ ¬[ωx ⪰ ωy].



Conversion Lemma

Let Φ denote the collection of all formulas of form (i) - (v).

Lemma

There exists an M-invariant preference rationalizing ⟨≿R ,≻R⟩ if and only if Φ is
satisfiable.



Interlude: Propositional Resolution

Suppose A1,A2,A3 are literals, i.e. each equal to Vi or ¬Vi for some Vi ∈ V, and
consider the clauses:

C = A1 ∨ A2 and C ′ = ¬A1 ∨ A3.

Observation

If C and C ′ evaluate to true for some assignment of truth values to the underlying
variables, so must:

D = A2 ∨ A3,

as either A1 or ¬A1 must be true.



Interlude: Propositional Resolution

More generally, let A1, . . . ,AK , B1 . . . ,BL be literals, where A1 = ¬B1, and consider
the clauses:

C =
K∨

k=1

Ak and C ′ =
L∨

l=1

Bl .

If C and C ′ evaluate to true for some assignment of truth values, then so must:

D =

[ K∨
k=2

Ak

]
∨
[ L∨
l=2

Bl

]
.

Definition

The clause D is called the resolvent of C , C ′, and C ∧ C ′ is logically equivalent to
C ∧ C ′ ∧ D.



A Consequence

Suppose we have two clauses:

C = A1 and C ′ = ¬A1.

Their resolvent is the empty clause, ∅, which is always false. Then C ∧ C ′ is logically
equivalent to C ∧ C ′ ∧∅, which is unsatisfiable, hence so is C ∧ C ′.

Takeaway: If, through finitely many resolution steps, we can ‘derive’ the empty clause,
the original collection of clauses must be unsatisfiable.



Proof Sketch: Necessity

Lemma

Suppose ⟨≿R ,≻R⟩ is not strongly acyclic. Then Φ is unsatisfiable.

Proof Sketch:
• Every ⟨F ,G ⟩ ∈ F0 can be expressed uniquely as disjunction of negative literals:

CFG =

[ ∨
(x,y)∈F\G

¬[x ⪰ y]

]
∨
[ ∨
(x,y)∈G

¬[x ≻ y]

]
.

Every such CFG can be obtained from Φ purely via resolution.

• If ⟨F̄ , Ḡ ⟩ is the collapse of ⟨F1,G1⟩ and ⟨F2,G2⟩, CF̄ Ḡ can be obtained iteratively
through resolution steps involving CF1G1 , CF2G2 and clauses in Φ.

• Thus the empty clause can be obtained via resolution from Φ, which is
unsatisfiable. Thus Φ is unsatisfiable.



Robinson’s Theorem

Theorem (Robinson, 1965)

A finite set of clauses Φ′ is unsatisfiable if and only if the empty clause ∅ can be
obtained from Φ′ through repeated resolution steps.

We rely on a slight strengthening of this result, which is standard in computer science.

Theorem (Negative Resolution Theorem)

A finite set of clauses Φ′ is unsatisfiable if and only if the empty clause ∅ can be
obtained from Φ′ through repeated resolution, where every step involves a parent
clause with no positive literals.

Takeaway: ‘Negative resolution,’ as a proof strategy, is refutation-complete.



Proof Sketch: Sufficiency

Lemma

Suppose Φ is unsatisfiable. Then ⟨≿R ,≻R⟩ is not strongly acyclic.

Proof Sketch:

• By Propositional Compactness (i.e. Tychonoff’s theorem), if Φ is unsatisfiable
there is a finite, unsatisfiable subset Φ′.

• By the Negative Resolution Theorem, there exists a binary proof tree which
derives the empty clause from clauses in Φ′ purely via negative resolution.

• Each node on such a proof tree corresponding to a clause with no positive literals
is the clausal representation of an order pair in some Fn, where n depends on the
node’s depth in the tree.

• In particular, the empty order pair ⟨∅,∅⟩ belongs to some Fn and hence F∗.



Application: Expected Utility

Let X denote the set of probability distributions over some finite prize space, and M
denote all transformations of the form:

µ 7→ αµ+ (1− α)ν

for some α ∈ (0, 1] and ν ∈ X .

Theorem

Suppose ≿R is finite. Then the following are equivalent:

(i) ⟨≿R ,≻R⟩ is strongly acyclic.

(ii) The data are rationalized by an expected utility preference.

Takeaway: When ⟨≿R ,≻R⟩ finite, able to obtain continuous invariant rationalizations.



Extension: Out-of-Sample Predictions

Suppose the data ⟨≿R ,≻R⟩ are strongly acyclic ( ⇐⇒ rationalizable) but x and y are
≿R -unrelated.

Question: When does every invariant rationalization agree on their ranking?



The Dushnik-Miller Theorem

Classically, i.e. in the case when M = {id}, the answer is not particularly interesting...

Theorem (Dushnik & Miller)

Suppose ≿R is an acyclic binary relation with strict component ≻R . Then:

≿⊺
R =

⋂
⪰∈P(≿R)

⪰,

where ≿⊺
R denotes the transitive closure of ≿R , and P(≿R) denotes the (non-empty)

set of all preference relations extending ≿R .

Takeaway: Only out-of-sample predictions are given by ≿⊺
R \ ≿R .



The Invariant Case: More Interesting?

Example

Let X = {a, b} × {0, 1, 2, . . .}. Suppose we observe:

(a, 2) ≻R (b, 1)

(a, 1) ≻R (b, 2).

Under rationality, no restriction on the preference between (a, 0), (b, 0). But every
stationary rationalization must have (a, 0) ≻ (b, 0).

b

a

0 1 2 3 4

· · ·



Out of Sample Predictions: An Extreme Example

Suppose X = R2
+, and M consists of all transformations (x1, x2) 7→ (λ1x1, λ2x2), for

λ ≫ 0.

• Cobb-Douglas preferences are the unique (i) monotone, (ii) continuous, and (iii)
M-invariant preferences.

Example

Suppose for some x , x ′ ≫ 0, where x , x ′ are ≥-incomparable, we observe x ∼R x ′.
There is a unique Cobb-Douglas preference consistent with ≿R .

Takeaway: By considering more structured rationalizations, obtain (possibly much)
richer out-of-sample predictions.



Characterizing of Out-of-Sample Predictions

Theorem

Suppose ⟨≿R ,≻R⟩ is strongly acyclic. Then x ⪰∗ y (resp. x ≻∗ y) for every M-
invariant rationalization ⪰∗ if and only if:〈

(y , x), (y , x)
〉
∈ F∗ (

resp.
〈
(y , x),∅

〉
∈ F∗).

Takeaway: Every rationalizing preference ranks x over y if and only if the opposite
relation arises as a ‘singleton’ restriction.



Proof Sketch

Proof Sketch:

• Clearly if F∗ contains some singleton restriction, then any restriction must satisfy
it and hence agree on that pair.

• Conversely, suppose every extension agrees x ⪰∗ y . Then every valid model for Φ
evaluates [y ≻ x] to ⊥.

• Define Φ̃ from Φ by first:

(i) Removing any clause containing [y ≻ x]; and

(ii) Deleting ¬[y ≻ x] from any remaining clause which contains it.

• By construction, there is a 1-1 correspondence between models for Φ that assigns
[y ≻ x] to ⊤ and models for Φ̃, hence Φ̃ is unsatisfiable.



Proof Sketch: Continued

Proof Sketch (Cont’d):

• By compactness, there exists a finite unsatisfiable subset Φ̃′ ⊂ Φ̃, and a derivation
of ∅ from Φ̃′ via negative resolution.

• Every clause D in the proof tree that contains no positive literals either (i) can be
derived from Φ via NR, or (ii) D ∨ ¬[y ≻ x] can be derived from Φ via NR.

• Since Φ is satisfiable by hypothesis, ∅ cannot be obtained from Φ in this way,
thus ∅ ∨ ¬[y ≻ x] = ¬[y ≻ x] can be.

• As ¬[y ≻ x] contains no positive literals and is deduced from Φ via negative
resolution,

〈
(y , x), (y , x)

〉
can be obtained via collapses from F0. An analogous

argument holds for x ≻∗ y .



Example Revisited

Example

Let X = {a, b} × {0, 1, 2, . . .}. Suppose we observe:

(a, 2) ≻R (b, 1)

(a, 1) ≻R (b, 2).

Under rationality, no restriction on the preference between (a, 0), (b, 0). But every
stationary rationalization must have (a, 0) ≻ (b, 0).

b

a

0 1 2 3 4

· · ·



Extension: Invariance Under Partial Functions

• Additive Separability/P2: X = X S , where |S | > 2. For all A ⊆ S and
x , y , z , z ′ ∈ X :

(xAz) ⪰ (yAz) ⇐⇒ (xAz
′) ⪰ (yAz

′).

→ For each B ⊆ S and acts ẑ , ẑ ′ on B, have map that takes all acts equal to ẑ on B
and replaces them with ẑ ′.

• Qualitative Probabilities: X = A, an algebra of subsets of S .

A ⪰ B ⇐⇒ A ∪ C ⪰ B ∪ C

for any C ∈ A disjoint from A,B.

→ For each C ∈ A map that takes union with C , but whose domain is precisely those
sets disjoint from C .

• Many More: Comonotonic additivity for CEU, sign-comonotonic consistency for
CPT (Wakker & Tversky ’93) etc.



The Longer Term

Long Term Objective

A ‘modular,’ ‘universal’ revealed preference theory: “if your axioms fall into bins A,B
and C , then the testable implications are .”

Long-run Objective: Write the ‘last revealed preference theorem.’



Conclusion

• Many of preference properties of first-order economic importance are invariance
axioms.

• Historically, no unified theory of testable implications. Reliance on ad hoc
methods in special cases.

• This Paper: Characterization of the testable implications of any axiom of this
form, for any revealed preference data, on any domain. Characterization of the
out-of-sample properties generated by any such axioms.

→ Novel methodological approach that lends itself to further generalizations applying
tools from computer science and logic.



Thank You!

Any Questions?


